CMemFile and Unicode - unicode

Am I right in thinking that the MFC class CMemFile is cannot be used to write unicode data to because it uses BYTE* which is defined as unsigned char BYTE?
The line line that actually writes the data in CMemFile::Write is
Memcpy((BYTE*)m_lpBuffer + m_nPosition, (BYTE*)lpBuf, nCount);
and if so can I replace BYTE with wchar_t in my own implementation of CMemfIle to get it working with unicode?
Thanks You
Paul..

I don't see why it couldn't be used directly.
The only issue is that when you're doing memory copying, you can't interchange the character count with the byte count.

Files are binary so always read/write bytes and use an encoding layer to convert to/from string unless you are sure the data is in ASCII encoding.
No, you need an encoder/decoder. For Unicode you need a unicode header followed by encoded characters. The exact binary values of encoded characters could be different based on the unicode encoding (UTF-7, UTF-8, UTF-16, UTF-32, etc).

Related

Understanding encoding schemes

I cannot understand some key elements of encoding:
Is ASCII only a character or it also has its encoding scheme algorithm ?
Does other windows code pages such as Latin1 have their own encoding algorithm ?
Are UTF7, 8, 16, 32 the only encoding algorithms ?
Does the UTF alghoritms are used only with the UNICODE set ?
Given the ASCII text: Hello World, if I want to convert it into Latin1 or BIG5, which encoding algorithms are being used in this process ? More specifically, does Latin1/Big5 use their own encoding alghoritm or I have to use a UTF alghoritm ?
1: Ascii is just an encoding — a really simple encoding. It's literally just the positive end of a signed byte (0...127) mapped to characters and control codes.
Refer to https://www.ascii.codes/ to see the full set and inspect the characters.
There are definitely encoding algorithms to convert ascii strings to and from strings in other encodings, but there is no compression/decompression algorithm required to write or read ascii strings like there is for utf8 or utf16, if that's what you're implying.
2: LATIN-1 is also not a compressed (usually called 'variable width') encoding, so there's no algorithm needed to get in and out of it.
See https://kb.iu.edu/d/aepu for a nice description of LATIN-1 conceptually and of each character in the set. Like a lot of encodings, its first 128 slots are just ascii. Like ascii, it's 1 byte in size, but it's an unsigned byte, so after the last ascii character (DEL/127), LATIN1 adds another 128 characters.
As with any conversion from one string encoding to another, there is an algorithm specifically tailored to that conversion.
3: Again, unicode encodings are just that — encodings. But they're all compressed except for utf32. So unless you're working with utf32 there is always a compression/decompression step required to write and read them.
Note: When working with utf32 strings there is one nonlinear oddity that has to be accounted for... combining characters. Technically that is yet another type of compression since they save space by not giving a codepoint to every possible combination of uncombined character and combining character. They "precombine" a few, but they would run out of slots very quickly if they did them all.
4: Yes. The compression/decompression algorithms for the compressed unicode encodings are just for those encodings. They would not work for any other encoding.
Think of it like zip/unzip. Unzipping anything other than a zipped file or folder would of course not work. That goes for things that are not compressed in the first place and also things that are compressed but using another compression algorithm (e.g.: rar).
I recently wrote the utf8 and utf16 compression/decompression code for a new cross-platform library being developed, and I can tell you quite confidently if you feed a Big5-encoded string into my method written specifically for decompressing utf8... not only would it not work, it might very well crash.
Re: your "Hello World" question... Refer to my answer to your second question about LATIN-1. No conversion is required to go from ascii to LATIN-1 because the first 128 characters (0...127) of LATIN-1 are ascii. If you're converting from LATIN-1 to ascii, the same is true for the lower half of LATIN-1, but if any of the characters beyond 127 are in the string, it would be what's called a "lossy"/partial conversion or an outright failure, depending on your tolerance level for lossiness. In your example, however, all of the characters in "Hello World" have the exact same values in both encodings, so it would convert perfectly, without loss, in either direction.
I know practically nothing about Big5, but regardless, don't use utf-x algos for other encodings. Each one of those is written very specifically for 1 particular encoding (or in the case of conversion: pair of encodings).
If you're curious about utf8/16 compression/decompression algorithms, the unicode website is where you should start (watch out though. they don't use the compression/decompression metaphor in their documentation):
http://unicode.org
You probably won't need anything else.
... except maybe a decent codepoint lookup tool: https://www.unicode.codes/
You can roll your own code based on the unicode documentation, or use the official unicode library:
http://site.icu-project.org/home
Hope this helps.
In general, most encoding schemes like ASCII or Latin-1 are simply big tables mapping characters to specific byte sequences. There may or may not be some specific algorithm how the creators came up with those specific character⟷byte associations, but there's generally not much more to it than that.
One of the innovations of Unicode specifically is the indirection of assigning each character a unique number first and foremost, and worrying about how to encode that number into bytes secondarily. There are a number of encoding schemes for how to do this, from the UCS and GB 18030 encodings to the most commonly used UTF-8/UTF-16 encodings. Some are largely defunct by now like UCS-2. Each one has their pros and cons in terms of space tradeoffs, ease of processing and transportability (e.g. UTF-7 for safe transport over 7-bit system like email). Unless otherwise noted, they can all encode the full set of current Unicode characters.
To convert from one encoding to another, you pretty much need to map bytes from one table to another. Meaning, if you look at the EBCDIC table and the Windows 1250 table, the characters 0xC1 and 0x41 respectively both seem to represent the same character "A", so when converting between the two encodings, you'd map those bytes as equivalent. Yes, that means there needs to be one such mapping between each possible encoding pair.
Since that is obviously rather laborious, modern converters virtually always go through Unicode as a middleman. This way each encoding only needs to be mapped to the Unicode table, and the conversion can be done with encoding A → Unicode code point → encoding B. In the end you just want to identify which characters look the same/mean the same, and change the byte representation accordingly.
A character encoding is a mapping from a sequence of characters to a sequence of bytes (in the past there were also encodings to a sequence of bits - they are falling out of fashion). Usually this mapping is one-to-one but not necessarily onto. This means there may be byte sequences that don't correspond to a character sequence in this encoding.
The domain of the mapping defines which characters can be encoded.
Now to your questions:
ASCII is both, it defines 128 characters (some of them are control codes) and how they are mapped to the byte values 0 to 127.
Each encoding may define its own set of characters and how they are mapped to bytes
no, there are others as well ASCII, ISO-8859-1, ...
Unicode uses a two step mapping: first the characters are mapped to (relatively) small integers called "code points", then these integers are mapped to a byte sequence. The first part is the same for all UTF encodings, the second step differs. Unicode has the ambition to contain all characters. This means, most characters are in the "UNICODE set".
Every character in the world has been assigned a unicode value [ numbered from 0 to ...]. It is actually an unique value. Now, it depends on an individual that how he wants to use that unicode value. He can even use it directly or can use some known encoding schemes like utf8, utf16 etc. Encoding schemes map that unicode value into some specific bit sequence [ can vary from 1 byte to 4 bytes or may be 8 in future if we get to know about all the languages of universe/aliens/multiverse ] so that it can be uniquely identified in the encoding scheme.
For example ASCII is an encoding scheme which only encodes 128 characters out of all characters. It uses one byte for every character which is equivalent to utf8 representation. GSM7 is one other format which uses 7 bit per character to encode 128 characters from unicode character list.
Utf8:
It uses 1 byte for characters whose unicode value is till 127.
Beyond this it has its own way of representing the unicode values.
Uses 2 byte for Cyrillic then 3 bytes for Hindi characters.
Utf16:
It uses 2 byte for characters whose unicode value is till 127.
and it also uses 2 byte for Cyrillic, Hindi characters.
All the utf encoding schemes fixes initial bits in specific pattern [ eg: 110|restbits] and rest bits [eg: initialbits|11001] takes the unicode value to make a unique representation.
Wikipedia on utf8, utf16, unicode will make it clear.
I coded an utf translator which converts incoming utf8 text across all languages into its equivalent utf16 text.

Change of char encoding in Eclipse

I am working on an assignment where I need to XOR the bits of each char of a given text. For example, weird char's like '��'.
When trying to save, Eclipse prompts that "Some characters cannot be mapped with Cp1252...", after which I can choose to save as UTF-8.
My knowledge of character encoding is quite fuzzy; wouldn't saving to UTF-8 change the bits? If so, how may I instead work with the original message (original bits) to XOR them and do my assignment?
Thanks!
I am assuming you are using Java in this answer.
The file encoding only changes how the data is represented in the file. When you read the file again (using the correct encoding) it will converted back to Unicode in your String so the program will see the same bits.
Encoding Cp1252 can only represent a small number of characters (less than 256) compared to the 113,021 characters in Unicode 7 all of which can be encoded with UTF-8.

How did SourceForge maim this Unicode character?

A little encoding puzzle for you.
A comment on a SourceForge tracker item contains the character U+2014, EM DASH, which is rendered by the web interface as — like it should.
In the XML export, however, it shows up as:
—
Decoding the entities, that results in these code points:
U+00E2 U+20AC U+201D
I.e. the characters —. The XML should have been —, the decimal representation of 0x2014, so this is probably a bug in the SF.net exporter.
Now I'm looking to reverse the process, but I can't find a way to get the above output from this Unicode character, no matter what erroneous encoding/decoding sequence I try. Any idea what happened here and how to reverse the process?
The the XML output is incorrectly been encoded using CP1252. To revert this, convert — to bytes using CP1252 encoding and then convert those bytes back to string/char using UTF-8 encoding.
Java based evidence:
String s = "—";
System.out.println(new String(s.getBytes("CP1252"), "UTF-8")); // —
Note that this assumes that the stdout console uses by itself UTF-8 to display the character.
In .Net, Encoding.UTF8.GetString(Encoding.GetEncoding(1252).GetBytes("—")) returns —.
SourceForge converted it to UTF8, interpreted the each of the bytes as characters in CP1252, then saved the characters as three separate entities using the actual Unicode codepoints for those characters.

What is encoding & decoding in communication?

Can someone please redirect me to some good references about the encoding and decoding in communication and different encoding techniques(unicode, base64, utf7) etc.
Wikipedia is always a good start.
Then there's always Joel Spolsky's article: The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!).
Note that the three things you name operate on different levels.
Unicode is a character set: a mapping between characters and numbers (code points).
UTF7 maps between code points and bytes.
base64 maps between bytes and bytes. (It mangles bytes so that they are represented by bytes in the ASCII range.)
The definitions of encoding and decoding are somewhat subjective.
Both are forms of transliteration, being the process of converting from one alphabet to another. ASCII to UTF8, ASCII to base64, etc are all examples of this.
What distinguishes the two is that "encoding" is often used when transliterating from a usable format to a transmission or intermediate format of some kind and decoding is the reverse. This is where the "subjective" bit comes in. ASCII to UTF8 can be viewed as encoding or decoding depending on the context.
Other formats like base64 are used almost universally for transmission only (eg binary data in email) and as such converting to them is almost universally called "encoding" and converting from as "decoding".
The important point to take away from all this is that something like ASCII or UTF8 is not magical in any way. All these formats are simply an agreed-upon encoding of information into a binary format. So ASCII 65 is 'A' for no other reason than that's the standard.
Unicode formats get more interesting because they make the distinction between the code point and the encoding. Unicode defines the code points for each character. The binary data is different for each encoding format. For example, see Unicode Character 'EURO-CURRENCY SIGN' (U+20A0) to see all the different binary values for one code point.
Regarding yours unicode, base64, utf7 (no one uses it, it might be utf8). They are not just "encoding & decoding" but encoding & decoding of text data.
Unicode is the way all real and possible characters are enumerated. It has nothing about encoding itself. UTFXX is set of encoding of unicode (converting code to actual bytes). most popular are UTF8 and UTF16. Very basically UTF8 is ASCII compatible (chars with codes < 128 are represented same way as ASCII), but other characters are represented by 2-3 bytes. UTF16 encode most of characters to 2 bytes.
Base64 has nothing about text data. It encodes generic binary data to text that consists of 64 printable ascii characters. It is used to transfer binary data, UTF8 and UTF16 via Email usually.

How to convert from unicode to ASCII

Is there any way to convert unicode values to ASCII?
To simply strip the accents from unicode characters you can use something like:
string.Concat(input.Normalize(NormalizationForm.FormD).Where(
c => CharUnicodeInfo.GetUnicodeCategory(c) != UnicodeCategory.NonSpacingMark));
You CAN'T convert from Unicode to ASCII. Almost every character in Unicode cannot be expressed in ASCII, and those that can be expressed have exactly the same codepoints in ASCII as in UTF-8, which is probably what you have. Almost the only thing you can do that is even close to the right thing is to discard all characters above codepoint 128, and even that is very likely nowhere near what your requirements say. (The other possibility is to simplify accented or umlauted letters to make more than 128 characters 'nearly' expressible, but that still doesn't even begin to actually cover Unicode.)
Technically, yes you can by using Encoding.ASCII.
Example (from byte[] to ASCII):
// Convert Unicode to Bytes
byte[] uni = Encoding.Unicode.GetBytes("Whatever unicode string you have");
// Convert to ASCII
string Ascii = Encoding.ASCII.GetString(uni);
Just remember Unicode a much larger standard than Ascii and there will be characters that simply cannot be correctly encoded. Have a look here for tables and a little more information on the two encodings.
This workaround might better suit your needs. It strips the unicode chars from a string and only keeps the ASCII chars.
byte[] bytes = Encoding.ASCII.GetBytes("eéêëèiïaâäàåcç  test");
char[] chars = Encoding.ASCII.GetChars(bytes);
string line = new String(chars);
line = line.Replace("?", "");
//Results in "eiac test"
Please note that the 2nd "space" in the character input string is the char with ASCII value 255
It depends what you mean by "convert".
You can transliterate using the AnyAscii package.
// C#
using AnyAscii;
string s = "άνθρωποι".Transliterate();
// anthropoi
Well, seeing as how there's some 100,000+ unicode characters and only 128 ASCII characters, a 1-1 mapping is obviously impossible.
You can use the Encoding.ASCII object to get the ASCII byte values from a Unicode string, though.
If your metadata fields only accept ASCII input. Unicode characters can be converted to their TEX equivalent through MathJax. What is MathJax?
MathJax is a JavaScript display engine for rendering TEX or MathML-coded mathematics in browsers without requiring font installation or browser plug-ins. Any modern browser with JavaScript enabled will be MathJax-ready. For general information about MathJax, visit mathjax.org.