PostgreSQL v7.4 ALTER TABLE to change column - postgresql

I have a need to change the length of CHAR columns in tables in a PostgreSQL v7.4 database. This version did not support the ability to directly change the column type or size using the ALTER TABLE statement. So, directly altering a column from a CHAR(10) to CHAR(20) for instance isn't possible (yeah, I know, "use varchars", but that's not an option in my current circumstance). Anyone have any advice/tricks on how to best accomplish this? My initial thoughts:
-- Save the table's data in a new "save" table.
CREATE TABLE save_data AS SELECT * FROM table_to_change;
-- Drop the columns from the first column to be changed on down.
ALTER TABLE table_to_change DROP column_name1; -- for each column starting with the first one that needs to be modified
ALTER TABLE table_to_change DROP column_name2;
...
-- Add the columns back, using the new size for the CHAR column
ALTER TABLE table_to_change ADD column_name1 CHAR(new_size); -- for each column dropped above
ALTER TABLE table_to_change ADD column_name2...
-- Copy the data bace from the "save" table
UPDATE table_to_change
SET column_name1=save_data.column_name1, -- for each column dropped/readded above
column_name2=save_date.column_name2,
...
FROM save_data
WHERE table_to_change.primary_key=save_data.primay_key;
Yuck! Hopefully there's a better way? Any suggestions appreciated. Thanks!

Not PostgreSQL, but in Oracle I have changed a column's type by:
Add a new column with a temporary name (ie: TMP_COL) and the new data type (ie: CHAR(20))
run an update query: UPDATE TBL SET TMP_COL = OLD_COL;
Drop OLD_COL
Rename TMP_COL to OLD_COL

I would dump the table contents to a flat file with COPY, drop the table, recreate it with the correct column setup, and then reload (with COPY again).
http://www.postgresql.org/docs/7.4/static/sql-copy.html
Is it acceptable to have downtime while performing this operation? Obviously what I've just described requires making the table unusable for a period of time, how long depends on the data size and hardware you're working with.
Edit: But COPY is quite a bit faster than INSERTs and UPDATEs. According to the docs you can make it even faster by using BINARY mode. BINARY makes it less compatible with other PGSQL installs but you won't care about that because you only want to load the data to the same instance that you dumped it from.

The best approach to your problem is to upgrade pg to something less archaic :)
Seriously. 7.4 is going to be removed from "supported versions" pretty soon, so I wouldn't wait for it to happen with 7.4 in production.

Related

"Attributes specified for column are incompatible with existing column definition"

It's been a while.
Using DB2 10 for z/OS, I've been asked to change a specific column in a table from decimal(7,2) to decimal(7,4). Sounds easy, right?
alter table MySchema.MyTable
alter column myColumn
set data type decimal(7,4);
But, DB2 responds with this error: "Attributes specified for column 'MYCOLUMN' are incompatible with existing column definition."
I had thought that converting from decimal(7,2) to decimal(7,4) would be pretty straightforward, but DB2 disagrees.
Outside of dropping the table and recreating it from scratch, what alternatives do I have?
Thanks in advance!
Dave
The reason Db2 doesn't like that change is you're going from from 99999.99 to 999.9999
Is that really what you want? Going from (7,2) to (9,4) would just add two more decimal places without losing any data and should be allowed by the Db.
Db2 for i gives a warning, but allows you to ignore the warning...
Create a new column ALTER ADD COLUMN of the right type, use an UPDATE to populate it, ALTER DROP COLUMN the old column. RENAME COLUMN so set the name of the original column.

Best practices for performing a table swap in Redshift

We're in the process of running a handful of hourly scripts on our Redshift cluster which build summary tables for data consumers. After assembling a staging table, the script then runs a transaction which deletes the existing table and replaces it with the staging table, as such:
BEGIN;
DROP TABLE IF EXISTS public.data_facts;
ALTER TABLE public.data_facts_stage RENAME TO data_facts;
COMMIT;
The problem with this operation is that long-running analysis queries will place an AccessShareLock on public.data_facts, preventing it from being dropped and thrashing our ETL cycle. I'm thinking a better solution would be one which renames the existing table, as such:
ALTER TABLE public.data_facts RENAME TO data_facts_old;
ALTER TABLE public.data_facts_stage RENAME TO data_facts;
DROP TABLE public.data_facts_old;
However, this approach presupposes that 1) public.data_facts exists, and 2) public.data_facts_old does not exist.
Do you know if there's a way to conduct this operation safely in SQL, without relying on application logic? (eg. something like ALTER TABLE IF EXISTS).
I haven't tried it but looking at the documentation of CREATE VIEW it seems that this can be done with late-binding views.
The main idea would be a view public.data_facts that users interact with. Behind the scenes, you can load new data and then swap the view to “point” to the new table.
Bootstrap
-- load data into public.data_facts_v0
CREATE VIEW public.data_facts AS
SELECT * from public.data_facts_v0 WITH NO SCHEMA BINDING;
Update
-- load data into public.data_facts_v1
CREATE OR REPLACE VIEW public.data_facts AS
SELECT * from public.data_facts_v1 WITH NO SCHEMA BINDING;
DROP TABLE public.data_facts_v0;
The WITH NO SCHEMA BINDING means the view will be late-binding. “A late-binding view doesn't check the underlying database objects, such as tables and other views, until the view is queried.” This means the update can even introduce a table with renamed columns or a completely new structure.
Notes:
It might be a good idea to wrap the swap operations into a transaction to make sure we don't drop the previous table if the VIEW swap failed.
You can add a new load time timestamp encode runlength default getdate() column to your target table, and make your ETL do this:
INSERT INTO public.data_facts
SELECT * FROM public.data_facts_staging;
DELETE FROM public.data_facts
WHERE load_time<(select max(load_time) from public.data_facts);
DROP TABLE public.data_facts_staging;
note: public.data_facts_staging should have exactly the same structure as public.data_facts except that the last column of public.data_facts is load_time, so that on insert it will be populated with the current timestamp.
The only implication is that it would require extra disk space for a moment between you insert new rows and delete the old rows, and load_time has to be always the last column. Also you have to vaccum table every time you do this.
Another good thing about this is that if your ETL fails and staging table is empty or there is no staging table you won't lose your data. In the pure SQL scenario of swapping tables with DDL you're not protected from dropping the target table when staging table is missing. In the suggested scenario if no new rows are inserted the delete statement deletes nothing (there are no rows less than max load time), so worst case is just having the old version of data.
p.s. there is a command that instead of insert ... select ... just changes the pointer from staging to target table (alter table ... append from ...) but it requires the same type of lock as alter table I guess, so I don't suggest this

Implications of using ADD COLUMN on large dataset

Docs for Redshift say:
ALTER TABLE locks the table for reads and writes until the operation completes.
My question is:
Say I have a table with 500 million rows and I want to add a column. This sounds like a heavy operation that could lock the table for a long time - yes? Or is it actually a quick operation since Redshift is a columnar db? Or it depends if column is nullable / has default value?
I find that adding (and dropping) columns is a very fast operation even on tables with many billions of rows, regardless of whether there is a default value or it's just NULL.
As you suggest, I believe this is a feature of the it being a columnar database so the rest of the table is undisturbed. It simply creates empty (or nearly empty) column blocks for the new column on each node.
I added an integer column with a default to a table of around 65M rows in Redshift recently and it took about a second to process. This was on a dw2.large (SSD type) single node cluster.
Just remember you can only add a column to the end (right) of the table, you have to use temporary tables etc if you want to insert a column somewhere in the middle.
Personally I have seen rebuilding the table works best.
I do it in following ways
Create a new table N_OLD_TABLE table
Define the datatype/compression encoding in the new table
Insert data into N_OLD(old_columns) select(old_columns) from old_table Rename OLD_Table to OLD_TABLE_BKP
Rename N_OLD_TABLE to OLD_TABLE
This is a much faster process. Doesn't block any table and you always have a backup of old table incase anything goes wrong

alter table xyz drop column

I have a table with 200 column, I have to drop 96 columns from this table.
Using the statement
alter table XYZ drop column a,b,c,d...................
is taking forever to drop the column on SQL Server2000
Can anyone help or give me some idea how can this be done effitiently..
thanks
This is not a trivial change to ask of any RDBMS and IS likely to take a while. Depending on the platform, it might also be exacerbated if there are a lot of rows and the columns you're dropping contain non-null data.
Perhaps it would be more feasible to SELECT the columns you want to keep into a new table, drop this one, and rename the new table to the original table name.
Answer intentionally written generically

ADD COLUMN with DEFAULT value to a huge table

I have a postgresql DB and a table with almost billion of rows.
when I try to add a new column with default value:
ALTER TABLE big_table
ADD COLUMN some_flag integer NOT NULL DEFAULT 0;
The transaction goes on for 30+ min .. and the DB logs starts to shoots warnings.
Any way to optimize the query ?
Besides doing it in batches (which will still take a while):
You could dump the table as COPY statements and write a script to edit the contents of the COPY statements to insert another column (COPY can be CSV IIRC).
Then you just reload your altered COPY dump and it should in theory be faster than the ALTER because COPY will not log transactions.
The other option is to turn off fsync while you run the command... just remember to turn it back on.
You can also do both of the above in batches.
Starting from PostgreSQL 11 this behaviour will change.
Waiting for PostgreSQL 11 – Fast ALTER TABLE ADD COLUMN with a non-NULL default:
So, for the longest time, when you did:
alter table x add column z text;
it was virtually instantaneous. Get a lock on table, add information about new column to system catalogs, and it's done.
But when you tried:
alter table x add column z text default 'some value';
then it took long time. How long it did depend on size of table.
This was because postgresql was actually rewriting the whole table, adding the column to each row, and filling it with default value.
"What happens if you want to set the column to NOT NULL also? Are we back to the slow version in that case or does this handle that as well?"
not null doesn’t change anything. it is a constraint for new rows. so adding a column with “not null default ‘xxx'” will be fast.
I'd consider creating the column without the default and manually updating the rows in batches with intermittent commits to apply the default.