Best practices for performing a table swap in Redshift - amazon-redshift

We're in the process of running a handful of hourly scripts on our Redshift cluster which build summary tables for data consumers. After assembling a staging table, the script then runs a transaction which deletes the existing table and replaces it with the staging table, as such:
BEGIN;
DROP TABLE IF EXISTS public.data_facts;
ALTER TABLE public.data_facts_stage RENAME TO data_facts;
COMMIT;
The problem with this operation is that long-running analysis queries will place an AccessShareLock on public.data_facts, preventing it from being dropped and thrashing our ETL cycle. I'm thinking a better solution would be one which renames the existing table, as such:
ALTER TABLE public.data_facts RENAME TO data_facts_old;
ALTER TABLE public.data_facts_stage RENAME TO data_facts;
DROP TABLE public.data_facts_old;
However, this approach presupposes that 1) public.data_facts exists, and 2) public.data_facts_old does not exist.
Do you know if there's a way to conduct this operation safely in SQL, without relying on application logic? (eg. something like ALTER TABLE IF EXISTS).

I haven't tried it but looking at the documentation of CREATE VIEW it seems that this can be done with late-binding views.
The main idea would be a view public.data_facts that users interact with. Behind the scenes, you can load new data and then swap the view to “point” to the new table.
Bootstrap
-- load data into public.data_facts_v0
CREATE VIEW public.data_facts AS
SELECT * from public.data_facts_v0 WITH NO SCHEMA BINDING;
Update
-- load data into public.data_facts_v1
CREATE OR REPLACE VIEW public.data_facts AS
SELECT * from public.data_facts_v1 WITH NO SCHEMA BINDING;
DROP TABLE public.data_facts_v0;
The WITH NO SCHEMA BINDING means the view will be late-binding. “A late-binding view doesn't check the underlying database objects, such as tables and other views, until the view is queried.” This means the update can even introduce a table with renamed columns or a completely new structure.
Notes:
It might be a good idea to wrap the swap operations into a transaction to make sure we don't drop the previous table if the VIEW swap failed.

You can add a new load time timestamp encode runlength default getdate() column to your target table, and make your ETL do this:
INSERT INTO public.data_facts
SELECT * FROM public.data_facts_staging;
DELETE FROM public.data_facts
WHERE load_time<(select max(load_time) from public.data_facts);
DROP TABLE public.data_facts_staging;
note: public.data_facts_staging should have exactly the same structure as public.data_facts except that the last column of public.data_facts is load_time, so that on insert it will be populated with the current timestamp.
The only implication is that it would require extra disk space for a moment between you insert new rows and delete the old rows, and load_time has to be always the last column. Also you have to vaccum table every time you do this.
Another good thing about this is that if your ETL fails and staging table is empty or there is no staging table you won't lose your data. In the pure SQL scenario of swapping tables with DDL you're not protected from dropping the target table when staging table is missing. In the suggested scenario if no new rows are inserted the delete statement deletes nothing (there are no rows less than max load time), so worst case is just having the old version of data.
p.s. there is a command that instead of insert ... select ... just changes the pointer from staging to target table (alter table ... append from ...) but it requires the same type of lock as alter table I guess, so I don't suggest this

Related

How do I copy data from one table to another, perform schema change and keep them in sync until cut off in Postgres?

I have workloads that have heavy schema changes and other ETL operations that are locking.
Before doing schema changes on my primary table, I would like to first copy the existing contents from the primary table on to a temporary table, then perform the schema change, then sync all new changes and once the "time is right" (cutoff?), do the cut over and have the temporary table become the primary table.
I know that I can use Triggers in postgres to sync data between two tables, and also use COPY to copy data from one table to another.
But I am not sure how can I can copy existing data first, then issue trigger to ensure no data is lost. Then also do the cut off so that the new table is primary.
What I am thinking is -
I issue a COPY table from primary table (TableA) to temp table TableB.
I then perform the schema change in TableB
I then setup Trigger from TableA to TableB for INSERT/UPDATE/DELETE
... Now I am not sure how can I cut off so TableB becomes TableA. I can use RENAME perhaps?
It feels like I can run into some lost changes between Step 1 and Step 2?
Basically I am trying to ensure no data between the three high level operations. Is there a better way to do this?

Cloning a Postgres table, including indexes and data

I am trying to create a clone of a Postgres table using plpgsql.
To date I have been simply truncating table 2 and re-inserting data from table 1.
TRUNCATE TABLE "dbPlan"."tb_plan_next";
INSERT INTO "dbPlan"."tb_plan_next" SELECT * FROM "dbPlan"."tb_plan";
As code this works as expected, however "dbPlan"."tb_plan" contains around 3 million records and therefore completes in around 20 minutes. This is too long and has a knock on effects on other processes.
It's important that all constraints, indexes and data are copied exactly to table 2.
I had tried dropping the table and re-creating it, however this did not improve speed.
DROP TABLE IF EXISTS "dbPlan"."tb_plan_next";
CREATE TABLE "dbPlan"."tb_plan_next" (LIKE "dbPlan"."tb_plan" INCLUDING ALL);
INSERT INTO "dbPlan"."tb_plan_next" SELECT * FROM "dbPlan"."tb_plan";
Is there a better method for achieving this?
I am considering creating the table and then creating indexes as a second step.
PostgreSQL doesn't provide a very elegant way of doing this. You could use pg_dump with -t and --section= to dump the pre-data and post-data for the table. Then you would replay the pre-data to create the table structure and the check constraints, then load the data from whereever you get it from, then replay the post-data to add the indexes and FK constraints.

Move truncated records to another table in Postgresql 9.5

Problem is following: remove all records from one table, and insert them to another.
I have a table that is partitioned by date criteria. To avoid partitioning each record one by one, I'm collecting the data in one table, and periodically move them to another table. Copied records have to be removed from first table. I'm using DELETE query with RETURNING, but the side effect is that autovacuum is having a lot of work to do to clean up the mess from original table.
I'm trying to achieve the same effect (copy and remove records), but without creating additional work for vacuum mechanism.
As I'm removing all rows (by delete without where conditions), I was thinking about TRUNCATE, but it does not support RETURNING clause. Another idea was to somehow configure the table, to automatically remove tuple from page on delete operation, without waiting for vacuum, but I did not found if it is possible.
Can you suggest something, that I could use to solve my problem?
You need to use something like:
--Open your transaction
BEGIN;
--Prevent concurrent writes, but allow concurrent data access
LOCK TABLE table_a IN SHARE MODE;
--Copy the data from table_a to table_b, you can also use CREATE TABLE AS to do this
INSERT INTO table_b AS SELECT * FROM table_a;
--Zeroying table_a
TRUNCATE TABLE table_a;
--Commits and release the lock
COMMIT;

Implications of using ADD COLUMN on large dataset

Docs for Redshift say:
ALTER TABLE locks the table for reads and writes until the operation completes.
My question is:
Say I have a table with 500 million rows and I want to add a column. This sounds like a heavy operation that could lock the table for a long time - yes? Or is it actually a quick operation since Redshift is a columnar db? Or it depends if column is nullable / has default value?
I find that adding (and dropping) columns is a very fast operation even on tables with many billions of rows, regardless of whether there is a default value or it's just NULL.
As you suggest, I believe this is a feature of the it being a columnar database so the rest of the table is undisturbed. It simply creates empty (or nearly empty) column blocks for the new column on each node.
I added an integer column with a default to a table of around 65M rows in Redshift recently and it took about a second to process. This was on a dw2.large (SSD type) single node cluster.
Just remember you can only add a column to the end (right) of the table, you have to use temporary tables etc if you want to insert a column somewhere in the middle.
Personally I have seen rebuilding the table works best.
I do it in following ways
Create a new table N_OLD_TABLE table
Define the datatype/compression encoding in the new table
Insert data into N_OLD(old_columns) select(old_columns) from old_table Rename OLD_Table to OLD_TABLE_BKP
Rename N_OLD_TABLE to OLD_TABLE
This is a much faster process. Doesn't block any table and you always have a backup of old table incase anything goes wrong

How do I INSERT and SELECT data with partitioned tables?

I set up a set of partitioned tables per the docs at http://www.postgresql.org/docs/8.1/interactive/ddl-partitioning.html
CREATE TABLE t (year, a);
CREATE TABLE t_1980 ( CHECK (year = 1980) ) INHERITS (t);
CREATE TABLE t_1981 ( CHECK (year = 1981) ) INHERITS (t);
CREATE RULE t_ins_1980 AS ON INSERT TO t WHERE (year = 1980)
DO INSTEAD INSERT INTO t_1980 VALUES (NEW.year, NEW.a);
CREATE RULE t_ins_1981 AS ON INSERT TO t WHERE (year = 1981)
DO INSTEAD INSERT INTO t_1981 VALUES (NEW.year, NEW.a);
From my understanding, if I INSERT INTO t (year, a) VALUES (1980, 5), it will go to t_1980, and if I INSERT INTO t (year, a) VALUES (1981, 3), it will go to t_1981. But, my understanding seems to be incorrect. First, I can't understand the following from the docs
"There is currently no simple way to specify that rows must not be inserted into the master table. A CHECK (false) constraint on the master table would be inherited by all child tables, so that cannot be used for this purpose. One possibility is to set up an ON INSERT trigger on the master table that always raises an error. (Alternatively, such a trigger could be used to redirect the data into the proper child table, instead of using a set of rules as suggested above.)"
Does the above mean that in spite of setting up the CHECK constraints and the RULEs, I also have to create TRIGGERs on the master table so that the INSERTs go to the correct tables? If that were the case, what would be the point of the db supporting partitioning? I could just set up the separate tables myself? I inserted a bunch of values into the master table, and those rows are still in the master table, not in the inherited tables.
Second question. When retrieving the rows, do I select from the master table, or do I have to select from the individual tables as needed? How would the following work?
SELECT year, a FROM t WHERE year IN (1980, 1981);
Update: Seems like I have found the answer to my own question
"Be aware that the COPY command ignores rules. If you are using COPY to insert data, you must copy the data into the correct child table rather than into the parent. COPY does fire triggers, so you can use it normally if you create partitioned tables using the trigger approach."
I was indeed using COPY FROM to load data, so RULEs were being ignored. Will try with TRIGGERs.
Definitely try triggers.
If you think you want to implement a rule, don't (the only exception that comes to mind is updatable views). See this great article by depesz for more explanation there.
In reality, Postgres only supports partitioning on the reading side of things. You're going to have setup the method of insertition into partitions yourself - in most cases TRIGGERing. Depending on the needs and applicaitons, it can sometimes be faster to teach your application to insert directly into the partitions.
When selecting from partioned tables, you can indeed just SELECT ... WHERE... on the master table so long as your CHECK constraints are properly setup (they are in your example) and the constraint_exclusion parameter is set corectly.
For 8.4:
SET constraint_exclusion = partition;
For < 8.4:
SET constraint_exclusion = on;
All this being said, I actually really like the way Postgres does it and use it myself often.
Does the above mean that in spite of
setting up the CHECK constraints and
the RULEs, I also have to create
TRIGGERs on the master table so that
the INSERTs go to the correct tables?
Yes. Read point 5 (section 5.9.2)
If that were the case, what would be
the point of the db supporting
partitioning? I could just set up the
separate tables myself?
Basically: the INSERTS in the child tables must be done explicitly (either creating TRIGGERS, or by specifying the correct child table in the query). But the partitioning
is transparent for SELECTS, and (given the storage and indexing advantages of this schema) that's the point.
(Besides, because the partitioned tables are inherited,
the schema is inherited from the parent, hence consistency
is enforced).
Triggers are definitelly better than rules.
Today I've played with partitioning of materialized view table and run into problem with triggers solution.
Why ?
I'm using RETURNING and current solution returns NULL :)
But here's solution which works for me - correct me if I'm wrong.
1. I have 3 tables which are inserted with some data, there's an view (let we call it viewfoo) which contains
data which need to be materialized.
2. Insert into last table have trigger which inserts into materialized view table
via INSERT INTO matviewtable SELECT * FROM viewfoo WHERE recno=NEW.recno;
That works fine and I'm using RETURNING recno; (recno is SERIAL type - sequence).
Materialized view (table) need to be partitioned because it's huge, and
according to my tests it's at least x10 faster for SELECT in this case.
Problems with partitioning:
* Current trigger solution RETURN NULL - so I cannot use RETURNING recno.
(Current trigger solution = trigger explained at depesz page).
Solution:
I've changed trigger of my 3rd table TO NOT insert into materialized view table (that table is parent of partitioned tables), but created new trigger which inserts
partitioned table directly FROM 3rd table and that trigger RETURN NEW.
Materialized view table is automagically updated and RETURNING recno works fine.
I'll be glad if this helped to anybody.