Should i use a C function or Obj-C Method? - iphone

I'm about to create a function which adds two NSDateComponents together is there any advantage to putting this in a C style function or should it go in a Obj-C method?
Is there ever a reason to use one rather then the other or should I always stick to Obj-C?
BTW: Not that it makes any difference I'm sure but this is for an app on the iPhone
Many thanks

In Objective-C, the proper terminology is not to “call a method on” an object, but to “send a message to” an object.
That makes the decision easy: Are you sending a message to an object? Are you telling it to do something or asking it for information? If so, then make the object respond to that message by putting the code in a method. If not (if the task is independent of any object), then make it a function.
You might browse the Foundation functions, UIKit functions, and AppKit functions lists for examples of the sort of object-independence that makes something belong in a function rather than a method.
I'm about to create a function which adds to NSDateComponents together is there any advantage to putting this in a C style function or should it go in a Obj-C method?
I would put that into an instance method categoried onto NSDateComponents. The call (message) would look like [componentsA componentsByAddingComponents_PRH:componentsB]. (Note that I included my initials so that if Apple ever adds a componentsByAddingComponents: method of their own, my app's behavior won't suddenly change when users upgrade their devices to the new OS.)
One existing example of this is NSDecimalNumber's decimalNumberByAdding: method.

Function calls have slightly less overhead than Objective C method calls, but that's not a good reason to use them unless you have already detected a critical performance problem in exactly that area.
Objective C programs look very different from plain C programs. Maintaining consistency in the look and the idiom of the language is a good enough reason to implement almost all simple behaviours as methods rather than as C functions.
Take a look at where Cocoa-Touch uses functions rather than methods for an example of this approach.

More likely you'll want to use an Objective-C method implemented as a category on NSDateComponents.
#interface NSDateComponents (DGCalculations)
/*!
\brief Add date components
\details Add the given date components to the receiver and
return the result as a new date components object.
*/
- (NSDateComponents *)componentsByAddingComponents:(NSDateComponents *)components;
#end
#implementation NSDateComponents (DGCalculations)
- (NSDateComponents *)componentsByAddingComponents:(NSDateComponents *)components {
NSDateComponents *result = [[[NSDateComponents alloc] init] autorelease];
[result setDay:[self day] + [components day]];
// handle the rest
return result;
}
#end
The use then turns out to be a little nicer:
result = [firstComponents add:secondComponents];

I'm not clear on what you mean by "adds to NSDateComponents together". Could you explain exactly what you need to do?
Whether to make it a function or a method is largely a question of how you expect to use it. Is there some particular object that needs to do this, or is the need likely to show up in many places in your program?

Related

Reuse nsdateformatter to display dates as strings

Sorry if this is a noob question, but I get tripped up on some simple things as I'm starting to learn to program. If I use a NSDateFormatter in one of my ViewControllers to display the date I want in a certain format, and the format doesn't change, is it "best practices" to declare that NSDateFormatter as an ivar of my class or property of my class and initialize it in the viewDidLoad so I can reuse it in my different methods? Right now I just instantiate one whenever I need it in a method that deals with the display and was wondering if it's better to just keep declaring it, or declare it once and just use it throughout the viewController class. thanks!
It's not a "noob question"; it's a reasonable question with a reasonable answer.
From a pure efficiency standpoint, you're optimizing prematurely. Don't worry, be happy. If you're managing memory correctly (so that you're not leaking NSDateFormatters) it really shouldn't matter how you obtain a particular instance, especially given that this is such a lightweight object. If you're creating a new NSDateFormatter 1000 times in a loop, you're being silly, but if you're creating the object now and then when you need it and it's going back out of existence properly, it's no big deal.
On the other hand, from an architectural standpoint, make sure what you are doing is DRY. If the date formatter needs any configuration at all, don't repeat yourself each time you create it; write a method that supplies the date formatter the same way each time so that the configuration code is all in just one place.
Instantiating new objects always comes at the price of memory and computing time, so if it's possible without much effort you should try to declare it once and then reuse it, at least within the same class. NSDateFormatter is not thread-safe, though, so you can't simply share one instance between different threads.
For any object, best practice is to just declare it at run time, use it and release it, so that the time taken by that object in memory remains maximum.
We make an ivar when we need the value of that ivar same throughout the class, like any age for an employee, it will be checked in different methods as in seniority, in ageWise category etc. And further if this iVar is an object, then in iPhone, it is a good practice always to be use it as property, so that the memory management problem shifts towards the compiler end.
Now in your case, you may generate a simple method that will take the date object and return the string, or any String as parameter and return date object, make an NSDateFormater there and use it. No need to make it as iVar.

String compare vs Class compare in objective-C

I'm writing an objective-C game and I'm at the stage where i should start optimising some of my code in the game loops.
I have an extensive amount of class compare methods used,
if ([obj isMemberOfClass:[SomeClass class]])
etc.
I heard this sort of checking is quite expensive, because I choose only to have 1 array populated with multiple classes, I need some sort of class check.
I was thinking perhaps that adding a property to NSObject subclassing NSObject to contain a string property, that during initialisation i would make equal to the class name of that particular subclass. Then simply doing a
if ([obj.klass isEqualTo:#"SomeClass"])
Would this be beneficial?
I'm trying to keep as much dynamic coding out of the game loops as possible.
Thanks!
Short answer: no. String comparison is prohibitively more expensive compared to other methods of comparing (or: classifying, categorizing) objects.
Long answer: don't optimize what you haven't analyzed, measured and compared. What you really want to do before you start optimizing is to get a clear picture of how your app behaves and what its performance bottlenecks are. The change you're attempting is unlikely to lead to any noticeable change in performance, so I suggest to first find the real bottlenecks.
In this particular case, sending isEqual to an NSString is 4 times slower than isMemberOfClass if the test fails. And such conditional tests fail most of the time, which is why you should ignore the results of the test succeeding.
The successful string comparison is fast because it's a simple pointer comparison, if two strings are equal it is likely that they point to the same memory address. If they're not equal, then each character in the string will be compared for equality, probably by using the hash method.
Here are the results of the Object Comparison tests that I added to my performance test project. You can use that project to make further tests.
This is not really a direct answer to your question but is an answer in a broader sense.
In Objective-C the philosophy is more like that of Smalltalk in which you send the message and let the object decide what to do with it. If you find yourself having to do lots of tests to see what class an object is, you need to rethink your design.
For instance, if you have an array of objects and you want to convert each one to an integer to do some maths on it, you can do something like this:
for (id anObj in array)
{
int anInt = [anObj intValue];
// do something with anInt
}
It doesn't matter what the class of each anObj is, you can send -intValue to it. If your array is full of NSStrings and NSNumbers, for example, it doesn't matter, the code above will do what you expect.
Many classes do not define a method for the selector -intValue. For example, if you send that message to an instance of NSData it will respond by throwing an exception. There are a couple of ways to resolve this depending on circumstances.
ignore objects that don't respond to the selector by testing to see if the object knows about the selector
for (id anObj in array)
{
if ([anObject respondsToSelector: #selector(intValue)])
{
int anInt = [anObj intValue];
// do something with anInt
}
}
Define the selector for all classes you know will be put in the array. This is done by declaring a category. This way you can extend any Objective-C class without subclassing. For instance, you can define an intValue method for NSData that returns its length, or the sum of its bytes or some other appropriate value.
Formalise the requirement by declaring a protocol. You can then test for conformance to the protocol, or rely on compile time checks to make sure the objects you put in the array conform to the protocol.
There are lots of things you can do, but you need to get away a bit from the C++/Java model of class hierarchies. Objective-C is much more flexible in that respect.

Regarding self. in viewDidUnload [duplicate]

This question already has answers here:
When should I use the “self” keyword?
(6 answers)
Closed 9 years ago.
I have an attendant question to iPhone: Why do I need self.<> in viewDidUnload?
Since there is a difference between using self.instance and instance, when is only instance actually used? Just setting the reference to nil seems quite useless? Why is the option there?
Generally, you'll find a lot of useful information here: http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmPractical.html%23//apple_ref/doc/uid/TP40004447-SW4
For the rest of this answer, I'll assume that you are referring to properties automatically synthesised with the #synthesize directive in your .m files.
Executive summary
When you use the form self.property, retain/release is automatically taken care of for you. When you use the form instanceVariable without the self prefix, you're on your own with retain/release.
Longer explanation
When you omit the "self." part, what you really are doing is that you access the automatically generated underlying ivar which the compiler has given the same name as you have given to the property.
If you don't want the compiler to generate ivars of the same name, then you can use an extended form of the #synthesize directive, like this:
#synthesize myvariable=__myvariable;
That way, you will ask the compiler to create an underlying ivar called __myvariable instead of the default myvariable.
Using this extended form, you would refer to either self.myvariable (as a property) or __myvariable (as an instance variable), which can be handy to visually distinguish the two types of access.
With that in place, we can get to the substance of the matter.
When you use self.myvariable, you implicitly call the accessor methods (possibly synthesised for convenience), like this:
self.myvariable = #"Some string";
is equal to
[self setMyvariable: #"Some string"];
or, in the case of a right hand use of the property
myLocalVar = self.myvariable;
is equal to:
myLocalVar = [self myvariable];
The examples above use the accessor names recommended by Apple.
On the other hand, when you use the instance variable directly, you just assign the variables directly without going through the accessors.
Now, one huge advantage of using the accessors on the iPhone is that the automatically synthesised accessors also take care of the retain/release messages, so you don't have to worry about that - or waste code lines handling this somewhat tedious stuff.
Since there is no need to worry about retain/release when you are just reading a property, you could argue that you only need to use the property syntax (with self.) on the left side of an assignment, so whether you want to use the self.-syntax on the right hand side of an assignment is partly a matter of style.
Personally, I have developed a style where I try not to refer to automatically synthesised ivars, unless I have specified them in the #synthesize directive. Otherwise Apple might one day change the way an unspecified #synthesize directive works, and my builds would break. But that is just a personal precaution of mine.
There is one exception to all this, as stated in the docs linked at the top of this answer - and that is that you should not use accessors to the class' own instance variables in the init* methods. One the Mac, you shouldn't use them in the dealloc methods, either, but this is one point where Apple's coding recommendations differ between the two platforms.
Ok, this was a long answer to just say, read the docs, but I hope it clarifies things a little. Memory management in reference counted environments is not trivial, so don't despair if it isn't clear at first.
PS: And if you think this the sort of worries that others should solve for you, log a bug with Apple to ask for garbage collection on iOS. It works nicely on 64-bit OS X.

Aspect-Oriented Objective-C Library?

Is there any Aspect-Oriented Objective-C library that I could perhaps use for iPhone development?
There is an old project called AspectCocoa, this might be what you are searching for.
Otherwise Í would suggest rolling your own. Either proxy based AOP by subclassing NSProxy for a change. Or you could do some method swizzling with the quite cool Obj-C run-time function method_exchangeImplementations().
But unless you are looking for a fun exercise, ask yourself what you want to achieve, and if there is an existing perfectly working Objective-C way to do it.
Check out my article about a possible solution:
http://codeshaker.blogspot.com/2012/01/aop-delivered.html
The base idea is to make a hook into the message sending mechanism and force it to the message forwarding route:
So A brief explanation about how it works:
At registration of a method call of a specific class it creates a method wrapper (AOPMethod) object and stores every information in it
about that specific method along with the block that will be used upon
interception.
Changes the implementation of the method to _objc_msgForward or _objc_msgForward_stret respectively using method_setImplementation. This is the point where we route message sending to the forwarding
mechanism. The next time the message is called on the base class, it
will return the _objc_msgForward implementation as if it not found the
implementation. So it starts to resolve it by going through the
message forwarding steps. Nice.
We add the forwardingTargetForSelector: method to the base class using class_addMethod to point to our implementation in the AOPAspect
class. Also we add the original method implementation and selector
(with an extended name to prevent conflicts between classes) to our
AOPAspect instance.
In the forwardingTargetForSelector: method we give back our AOPAspect instance. With this we route the message forwarding from the
base object to our AOPAspect object.
This forwardingTargetForSelector: method will be called again on AOPAspect as we don't have that selector implemented. This case we
return nil, so message forwarding steps further and will check for the
methodSignatureForSelector: and forwardInvocation: methods on
AOPAspect.
In methodSignatureForSelector: we gave back the correct message signature that is already stored in a dictionary in a method wrapper
object.
At the time it arrives to our implementation of forwardInvocation: in AOPAspect we have a fully configured NSInvocation instance and the
only thing we have to do is to change the selector to the extended
version we added to AOPAspect class. Here we can run the blocks
registered for the given method before/after or even instead of the
method call. And of course we can run the original method by calling
[anInvocation invoke].
For simplicity, we just pass the NSInvocation object to the blocks registered for the method, so they can access all arguments and the
return value as well through the getArgument:atIndex: and
getReturnValue: methods.
And that's it. It works with all kind of return types, argument types
and any variation of arguments.
You can find the concrete example on the above link. Please feel free to use it.
The question is old but I discovered this project today and it might be helpful to someone in the future.
https://github.com/steipete/Aspects
Also you might want to check out the library at https://github.com/moszi/AOP-in-Objective-C which is a very simple NSProxy subclass allowing you to intercept the beginning and the end of the method calls.
With this you can even create a proxy class for you objects to make sure messages sent to your object are serialized over one single thread, regardless of the invoking thread.
All still interested people should take a look at https://github.com/mgebele/MGAOP
This seems to be a new project with future potential.
Check out this one https://github.com/pvantrepote/FlexOC
It's an alpha version and uses (for now) the Proxy implementation. It does also dependency injections.
Another one is Aspect Objective-C: https://github.com/tomdalling/AspectObjectiveC
With Objective-C i would suggest to go with the here much used Category- and Delegate-Pattern. These can be more useful than AOP.
Don't try and solve your problems with solutions you learned for other languages.
I made some rudimentary aop pre and post process function on an NSObject category
#implementation NSObject (AOP)
- (void)preprocess:(SEL)sel with:(void (^)(id obj, id param))implementingBlock{
Method m1 = class_getInstanceMethod(self.class, sel);
IMP imp1 = method_getImplementation(m1);
SEL replacement = sel_registerName( [[[NSString stringWithUTF8String:sel_getName(sel)] stringByAppendingString:#"pre"] cStringUsingEncoding:NSUTF8StringEncoding]);
class_addMethod(self.class,replacement, imp1, nil);
method_setImplementation(m1, imp_implementationWithBlock(^(id x, id param){
implementingBlock(x,param);
[x performSelector:replacement withObject:param];
}));
}
- (void)postprocess:(SEL)sel with:(void (^)(id obj, id param))implementingBlock{
Method m1 = class_getInstanceMethod(self.class, sel);
IMP imp1 = method_getImplementation(m1);
SEL replacement = sel_registerName( [[[NSString stringWithUTF8String:sel_getName(sel)] stringByAppendingString:#"post"] cStringUsingEncoding:NSUTF8StringEncoding]);
class_addMethod(self.class,replacement, imp1, nil);
method_setImplementation(m1, imp_implementationWithBlock(^(id x, id param){
[x performSelector:replacement withObject:param];
implementingBlock(x,param);
}));
}
#end
I'm working on a real (it is more than method-swizzling) AOP-Framework for Objective-C. An alpha will be released soon. You can listen to my german presentation on the Macoun'09 conference here:
http://www.macoun.de/video2009ts6.php
If you're still interested in AOP for Objective-C you can send me a mail to negm-awad#cocoading.de or simply visit this site:
aspective-c.com/index.html
in a few weeks. There will be an english version (yup, not translated by me ;-)) of the site and the manual in a few weeks.
https://github.com/eleme/Stinger
Stinger is a high-efficiency library with great compatibility, for aop in Objective-C, using libffi.

What are best practices that you use when writing Objective-C and Cocoa? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
I know about the HIG (which is quite handy!), but what programming practices do you use when writing Objective-C, and more specifically when using Cocoa (or CocoaTouch).
There are a few things I have started to do that I do not think are standard:
1) With the advent of properties, I no longer use "_" to prefix "private" class variables. After all, if a variable can be accessed by other classes shouldn't there be a property for it? I always disliked the "_" prefix for making code uglier, and now I can leave it out.
2) Speaking of private things, I prefer to place private method definitions within the .m file in a class extension like so:
#import "MyClass.h"
#interface MyClass ()
- (void) someMethod;
- (void) someOtherMethod;
#end
#implementation MyClass
Why clutter up the .h file with things outsiders should not care about? The empty () works for private categories in the .m file, and issues compile warnings if you do not implement the methods declared.
3) I have taken to putting dealloc at the top of the .m file, just below the #synthesize directives. Shouldn't what you dealloc be at the top of the list of things you want to think about in a class? That is especially true in an environment like the iPhone.
3.5) In table cells, make every element (including the cell itself) opaque for performance. That means setting the appropriate background color in everything.
3.6) When using an NSURLConnection, as a rule you may well want to implement the delegate method:
- (NSCachedURLResponse *)connection:(NSURLConnection *)connection
willCacheResponse:(NSCachedURLResponse *)cachedResponse
{
return nil;
}
I find most web calls are very singular and it's more the exception than the rule you'll be wanting responses cached, especially for web service calls. Implementing the method as shown disables caching of responses.
Also of interest, are some good iPhone specific tips from Joseph Mattiello (received in an iPhone mailing list). There are more, but these were the most generally useful I thought (note that a few bits have now been slightly edited from the original to include details offered in responses):
4) Only use double precision if you have to, such as when working with CoreLocation. Make sure you end your constants in 'f' to make gcc store them as floats.
float val = someFloat * 2.2f;
This is mostly important when someFloat may actually be a double, you don't need the mixed-mode math, since you're losing precision in 'val' on storage. While floating-point numbers are supported in hardware on iPhones, it may still take more time to do double-precision arithmetic as opposed to single precision. References:
Double vs float on the iPhone
iPhone/iPad double precision math
On the older phones supposedly calculations operate at the same speed but you can have more single precision components in registers than doubles, so for many calculations single precision will end up being faster.
5) Set your properties as nonatomic. They're atomic by default and upon synthesis, semaphore code will be created to prevent multi-threading problems. 99% of you probably don't need to worry about this and the code is much less bloated and more memory-efficient when set to nonatomic.
6) SQLite can be a very, very fast way to cache large data sets. A map application for instance can cache its tiles into SQLite files. The most expensive part is disk I/O. Avoid many small writes by sending BEGIN; and COMMIT; between large blocks. We use a 2 second timer for instance that resets on each new submit. When it expires, we send COMMIT; , which causes all your writes to go in one large chunk. SQLite stores transaction data to disk and doing this Begin/End wrapping avoids creation of many transaction files, grouping all of the transactions into one file.
Also, SQL will block your GUI if it's on your main thread. If you have a very long query, It's a good idea to store your queries as static objects, and run your SQL on a separate thread. Make sure to wrap anything that modifies the database for query strings in #synchronize() {} blocks. For short queries just leave things on the main thread for easier convenience.
More SQLite optimization tips are here, though the document appears out of date many of the points are probably still good;
http://web.utk.edu/~jplyon/sqlite/SQLite_optimization_FAQ.html
Don't use unknown strings as format strings
When methods or functions take a format string argument, you should make sure that you have control over the content of the format string.
For example, when logging strings, it is tempting to pass the string variable as the sole argument to NSLog:
NSString *aString = // get a string from somewhere;
NSLog(aString);
The problem with this is that the string may contain characters that are interpreted as format strings. This can lead to erroneous output, crashes, and security problems. Instead, you should substitute the string variable into a format string:
NSLog(#"%#", aString);
Use standard Cocoa naming and formatting conventions and terminology rather than whatever you're used to from another environment. There are lots of Cocoa developers out there, and when another one of them starts working with your code, it'll be much more approachable if it looks and feels similar to other Cocoa code.
Examples of what to do and what not to do:
Don't declare id m_something; in an object's interface and call it a member variable or field; use something or _something for its name and call it an instance variable.
Don't name a getter -getSomething; the proper Cocoa name is just -something.
Don't name a setter -something:; it should be -setSomething:
The method name is interspersed with the arguments and includes colons; it's -[NSObject performSelector:withObject:], not NSObject::performSelector.
Use inter-caps (CamelCase) in method names, parameters, variables, class names, etc. rather than underbars (underscores).
Class names start with an upper-case letter, variable and method names with lower-case.
Whatever else you do, don't use Win16/Win32-style Hungarian notation. Even Microsoft gave up on that with the move to the .NET platform.
IBOutlets
Historically, memory management of outlets has been poor.
Current best practice is to declare outlets as properties:
#interface MyClass :NSObject {
NSTextField *textField;
}
#property (nonatomic, retain) IBOutlet NSTextField *textField;
#end
Using properties makes the memory management semantics clear; it also provides a consistent pattern if you use instance variable synthesis.
Use the LLVM/Clang Static Analyzer
NOTE: Under Xcode 4 this is now built into the IDE.
You use the Clang Static Analyzer to -- unsurprisingly -- analyse your C and Objective-C code (no C++ yet) on Mac OS X 10.5. It's trivial to install and use:
Download the latest version from this page.
From the command-line, cd to your project directory.
Execute scan-build -k -V xcodebuild.
(There are some additional constraints etc., in particular you should analyze a project in its "Debug" configuration -- see http://clang.llvm.org/StaticAnalysisUsage.html for details -- the but that's more-or-less what it boils down to.)
The analyser then produces a set of web pages for you that shows likely memory management and other basic problems that the compiler is unable to detect.
This is subtle one but handy one. If you're passing yourself as a delegate to another object, reset that object's delegate before you dealloc.
- (void)dealloc
{
self.someObject.delegate = NULL;
self.someObject = NULL;
//
[super dealloc];
}
By doing this you're ensuring that no more delegate methods will get sent. As you're about to dealloc and disappear into the ether you want to make sure that nothing can send you any more messages by accident. Remember self.someObject could be retained by another object (it could be a singleton or on the autorelease pool or whatever) and until you tell it "stop sending me messages!", it thinks your just-about-to-be-dealloced object is fair game.
Getting into this habit will save you from lots of weird crashes that are a pain to debug.
The same principal applies to Key Value Observation, and NSNotifications too.
Edit:
Even more defensive, change:
self.someObject.delegate = NULL;
into:
if (self.someObject.delegate == self)
self.someObject.delegate = NULL;
#kendell
Instead of:
#interface MyClass (private)
- (void) someMethod
- (void) someOtherMethod
#end
Use:
#interface MyClass ()
- (void) someMethod
- (void) someOtherMethod
#end
New in Objective-C 2.0.
Class extensions are described in Apple's Objective-C 2.0 Reference.
"Class extensions allow you to declare additional required API for a class in locations other than within the primary class #interface block"
So they're part of the actual class - and NOT a (private) category in addition to the class. Subtle but important difference.
Avoid autorelease
Since you typically(1) don't have direct control over their lifetime, autoreleased objects can persist for a comparatively long time and unnecessarily increase the memory footprint of your application. Whilst on the desktop this may be of little consequence, on more constrained platforms this can be a significant issue. On all platforms, therefore, and especially on more constrained platforms, it is considered best practice to avoid using methods that would lead to autoreleased objects and instead you are encouraged to use the alloc/init pattern.
Thus, rather than:
aVariable = [AClass convenienceMethod];
where able, you should instead use:
aVariable = [[AClass alloc] init];
// do things with aVariable
[aVariable release];
When you're writing your own methods that return a newly-created object, you can take advantage of Cocoa's naming convention to flag to the receiver that it must be released by prepending the method name with "new".
Thus, instead of:
- (MyClass *)convenienceMethod {
MyClass *instance = [[[self alloc] init] autorelease];
// configure instance
return instance;
}
you could write:
- (MyClass *)newInstance {
MyClass *instance = [[self alloc] init];
// configure instance
return instance;
}
Since the method name begins with "new", consumers of your API know that they're responsible for releasing the received object (see, for example, NSObjectController's newObject method).
(1) You can take control by using your own local autorelease pools. For more on this, see Autorelease Pools.
Some of these have already been mentioned, but here's what I can think of off the top of my head:
Follow KVO naming rules. Even if you don't use KVO now, in my experience often times it's still beneficial in the future. And if you are using KVO or bindings, you need to know things are going work the way they are supposed to. This covers not just accessor methods and instance variables, but to-many relationships, validation, auto-notifying dependent keys, and so on.
Put private methods in a category. Not just the interface, but the implementation as well. It's good to have some distance conceptually between private and non-private methods. I include everything in my .m file.
Put background thread methods in a category. Same as above. I've found it's good to keep a clear conceptual barrier when you're thinking about what's on the main thread and what's not.
Use #pragma mark [section]. Usually I group by my own methods, each subclass's overrides, and any information or formal protocols. This makes it a lot easier to jump to exactly what I'm looking for. On the same topic, group similar methods (like a table view's delegate methods) together, don't just stick them anywhere.
Prefix private methods & ivars with _. I like the way it looks, and I'm less likely to use an ivar when I mean a property by accident.
Don't use mutator methods / properties in init & dealloc. I've never had anything bad happen because of it, but I can see the logic if you change the method to do something that depends on the state of your object.
Put IBOutlets in properties. I actually just read this one here, but I'm going to start doing it. Regardless of any memory benefits, it seems better stylistically (at least to me).
Avoid writing code you don't absolutely need. This really covers a lot of things, like making ivars when a #define will do, or caching an array instead of sorting it each time the data is needed. There's a lot I could say about this, but the bottom line is don't write code until you need it, or the profiler tells you to. It makes things a lot easier to maintain in the long run.
Finish what you start. Having a lot of half-finished, buggy code is the fastest way to kill a project dead. If you need a stub method that's fine, just indicate it by putting NSLog( #"stub" ) inside, or however you want to keep track of things.
Write unit tests. You can test a lot of things in Cocoa that might be harder in other frameworks. For example, with UI code, you can generally verify that things are connected as they should be and trust that they'll work when used. And you can set up state & invoke delegate methods easily to test them.
You also don't have public vs. protected vs. private method visibility getting in the way of writing tests for your internals.
Golden Rule: If you alloc then you release!
UPDATE: Unless you are using ARC
Don't write Objective-C as if it were Java/C#/C++/etc.
I once saw a team used to writing Java EE web applications try to write a Cocoa desktop application. As if it was a Java EE web application. There was a lot of AbstractFooFactory and FooFactory and IFoo and Foo flying around when all they really needed was a Foo class and possibly a Fooable protocol.
Part of ensuring you don't do this is truly understanding the differences in the language. For example, you don't need the abstract factory and factory classes above because Objective-C class methods are dispatched just as dynamically as instance methods, and can be overridden in subclasses.
Make sure you bookmark the Debugging Magic page. This should be your first stop when banging your head against a wall while trying to find the source of a Cocoa bug.
For example, it will tell you how to find the method where you first allocated memory that later is causing crashes (like during app termination).
Try to avoid what I have now decided to call Newbiecategoryaholism. When newcomers to Objective-C discover categories they often go hog wild, adding useful little categories to every class in existence ("What? i can add a method to convert a number to roman numerals to NSNumber rock on!").
Don't do this.
Your code will be more portable and easier to understand with out dozens of little category methods sprinkled on top of two dozen foundation classes.
Most of the time when you really think you need a category method to help streamline some code you'll find you never end up reusing the method.
There are other dangers too, unless you're namespacing your category methods (and who besides the utterly insane ddribin is?) there is a chance that Apple, or a plugin, or something else running in your address space will also define the same category method with the same name with a slightly different side effect....
OK. Now that you've been warned, ignore the "don't do this part". But exercise extreme restraint.
Resist subclassing the world. In Cocoa a lot is done through delegation and use of the underlying runtime that in other frameworks is done through subclassing.
For example, in Java you use instances of anonymous *Listener subclasses a lot and in .NET you use your EventArgs subclasses a lot. In Cocoa, you don't do either — the target-action is used instead.
Sort strings as the user wants
When you sort strings to present to the user, you should not use the simple compare: method. Instead, you should always use localized comparison methods such as localizedCompare: or localizedCaseInsensitiveCompare:.
For more details, see Searching, Comparing, and Sorting Strings.
Declared Properties
You should typically use the Objective-C 2.0 Declared Properties feature for all your properties. If they are not public, add them in a class extension. Using declared properties makes the memory management semantics immediately clear, and makes it easier for you to check your dealloc method -- if you group your property declarations together you can quickly scan them and compare with the implementation of your dealloc method.
You should think hard before not marking properties as 'nonatomic'. As The Objective C Programming Language Guide notes, properties are atomic by default, and incur considerable overhead. Moreover, simply making all your properties atomic does not make your application thread-safe. Also note, of course, that if you don't specify 'nonatomic' and implement your own accessor methods (rather than synthesising them), you must implement them in an atomic fashion.
Think about nil values
As this question notes, messages to nil are valid in Objective-C. Whilst this is frequently an advantage -- leading to cleaner and more natural code -- the feature can occasionally lead to peculiar and difficult-to-track-down bugs if you get a nil value when you weren't expecting it.
Use NSAssert and friends.
I use nil as valid object all the time ... especially sending messages to nil is perfectly valid in Obj-C.
However if I really want to make sure about the state of a variable, I use NSAssert and NSParameterAssert, which helps to track down problems easily.
Simple but oft-forgotten one. According to spec:
In general, methods in different
classes that have the same selector
(the same name) must also share the
same return and argument types. This
constraint is imposed by the compiler
to allow dynamic binding.
in which case all the same named selectors, even if in different classes, will be regarded as to have identical return/argument types. Here is a simple example.
#interface FooInt:NSObject{}
-(int) print;
#end
#implementation FooInt
-(int) print{
return 5;
}
#end
#interface FooFloat:NSObject{}
-(float) print;
#end
#implementation FooFloat
-(float) print{
return 3.3;
}
#end
int main (int argc, const char * argv[]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
id f1=[[FooFloat alloc]init];
//prints 0, runtime considers [f1 print] to return int, as f1's type is "id" and FooInt precedes FooBar
NSLog(#"%f",[f1 print]);
FooFloat* f2=[[FooFloat alloc]init];
//prints 3.3 expectedly as the static type is FooFloat
NSLog(#"%f",[f2 print]);
[f1 release];
[f2 release]
[pool drain];
return 0;
}
If you're using Leopard (Mac OS X 10.5) or later, you can use the Instruments application to find and track memory leaks. After building your program in Xcode, select Run > Start with Performance Tool > Leaks.
Even if your app doesn't show any leaks, you may be keeping objects around too long. In Instruments, you can use the ObjectAlloc instrument for this. Select the ObjectAlloc instrument in your Instruments document, and bring up the instrument's detail (if it isn't already showing) by choosing View > Detail (it should have a check mark next to it). Under "Allocation Lifespan" in the ObjectAlloc detail, make sure you choose the radio button next to "Created & Still Living".
Now whenever you stop recording your application, selecting the ObjectAlloc tool will show you how many references there are to each still-living object in your application in the "# Net" column. Make sure you not only look at your own classes, but also the classes of your NIB files' top-level objects. For example, if you have no windows on the screen, and you see references to a still-living NSWindow, you may have not released it in your code.
Clean up in dealloc.
This is one of the easiest things to forget - esp. when coding at 150mph. Always, always, always clean up your attributes/member variables in dealloc.
I like to use Objc 2 attributes - with the new dot notation - so this makes the cleanup painless. Often as simple as:
- (void)dealloc
{
self.someAttribute = NULL;
[super dealloc];
}
This will take care of the release for you and set the attribute to NULL (which I consider defensive programming - in case another method further down in dealloc accesses the member variable again - rare but could happen).
With GC turned on in 10.5, this isn't needed so much any more - but you might still need to clean up others resources you create, you can do that in the finalize method instead.
All these comments are great, but I'm really surprised nobody mentioned Google's Objective-C Style Guide that was published a while back. I think they have done a very thorough job.
Also, semi-related topic (with room for more responses!):
What are those little Xcode tips & tricks you wish you knew about 2 years ago?.
Don't forget that NSWindowController and NSViewController will release the top-level objects of the NIB files they govern.
If you manually load a NIB file, you are responsible for releasing that NIB's top-level objects when you are done with them.
One rather obvious one for a beginner to use: utilize Xcode's auto-indentation feature for your code. Even if you are copy/pasting from another source, once you have pasted the code, you can select the entire block of code, right click on it, and then choose the option to re-indent everything within that block.
Xcode will actually parse through that section and indent it based on brackets, loops, etc. It's a lot more efficient than hitting the space bar or tab key for each and every line.
I know I overlooked this when first getting into Cocoa programming.
Make sure you understand memory management responsibilities regarding NIB files. You are responsible for releasing the top-level objects in any NIB file you load. Read Apple's Documentation on the subject.
Turn on all GCC warnings, then turn off those that are regularly caused by Apple's headers to reduce noise.
Also run Clang static analysis frequently; you can enable it for all builds via the "Run Static Analyzer" build setting.
Write unit tests and run them with each build.
Variables and properties
1/ Keeping your headers clean, hiding implementation
Don't include instance variables in your header. Private variables put into class continuation as properties. Public variables declare as public properties in your header.
If it should be only read, declare it as readonly and overwrite it as readwrite in class continutation.
Basically I am not using variables at all, only properties.
2/ Give your properties a non-default variable name, example:
#synthesize property = property_;
Reason 1: You will catch errors caused by forgetting "self." when assigning the property.
Reason 2: From my experiments, Leak Analyzer in Instruments has problems to detect leaking property with default name.
3/ Never use retain or release directly on properties (or only in very exceptional situations). In your dealloc just assign them a nil. Retain properties are meant to handle retain/release by themselves. You never know if a setter is not, for example, adding or removing observers. You should use the variable directly only inside its setter and getter.
Views
1/ Put every view definition into a xib, if you can (the exception is usually dynamic content and layer settings). It saves time (it's easier than writing code), it's easy to change and it keeps your code clean.
2/ Don't try to optimize views by decreasing the number of views. Don't create UIImageView in your code instead of xib just because you want to add subviews into it. Use UIImageView as background instead. The view framework can handle hundreds of views without problems.
3/ IBOutlets don't have to be always retained (or strong). Note that most of your IBOutlets are part of your view hierarchy and thus implicitly retained.
4/ Release all IBOutlets in viewDidUnload
5/ Call viewDidUnload from your dealloc method. It is not implicitly called.
Memory
1/ Autorelease objects when you create them. Many bugs are caused by moving your release call into one if-else branch or after a return statement. Release instead of autorelease should be used only in exceptional situations - e.g. when you are waiting for a runloop and you don't want your object to be autoreleased too early.
2/ Even if you are using Authomatic Reference Counting, you have to understand perfectly how retain-release methods work. Using retain-release manually is not more complicated than ARC, in both cases you have to thing about leaks and retain-cycles.
Consider using retain-release manually on big projects or complicated object hierarchies.
Comments
1/ Make your code autodocumented.
Every variable name and method name should tell what it is doing. If code is written correctly (you need a lot of practice in this), you won't need any code comments (not the same as documentation comments). Algorithms can be complicated but the code should be always simple.
2/ Sometimes, you'll need a comment. Usually to describe a non apparent code behavior or hack. If you feel you have to write a comment, first try to rewrite the code to be simpler and without the need of comments.
Indentation
1/ Don't increase indentation too much.
Most of your method code should be indented on the method level. Nested blocks (if, for etc.) decrease readability. If you have three nested blocks, you should try to put the inner blocks into a separate method. Four or more nested blocks should be never used.
If most of your method code is inside of an if, negate the if condition, example:
if (self) {
//... long initialization code ...
}
return self;
if (!self) {
return nil;
}
//... long initialization code ...
return self;
Understand C code, mainly C structs
Note that Obj-C is only a light OOP layer over C language. You should understand how basic code structures in C work (enums, structs, arrays, pointers etc).
Example:
view.frame = CGRectMake(view.frame.origin.x, view.frame.origin.y, view.frame.size.width, view.frame.size.height + 20);
is the same as:
CGRect frame = view.frame;
frame.size.height += 20;
view.frame = frame;
And many more
Mantain your own coding standards document and update it often. Try to learn from your bugs. Understand why a bug was created and try to avoid it using coding standards.
Our coding standards have currently about 20 pages, a mix of Java Coding Standards, Google Obj-C/C++ Standards and our own addings. Document your code, use standard standard indentation, white spaces and blank lines on the right places etc.
Be more functional.
Objective-C is object-oriented language, but Cocoa framework functional-style aware, and is designed functional style in many cases.
There is separation of mutability. Use immutable classes as primary, and mutable object as secondary. For instance, use NSArray primarily, and use NSMutableArray only when you need.
There is pure functions. Not so many, buy many of framework APIs are designed like pure function. Look at functions such as CGRectMake() or CGAffineTransformMake(). Obviously pointer form looks more efficient. However indirect argument with pointers can't offer side-effect-free. Design structures purely as much as possible.
Separate even state objects. Use -copy instead of -retain when passing a value to other object. Because shared state can influence mutation to value in other object silently. So can't be side-effect-free. If you have a value from external from object, copy it. So it's also important designing shared state as minimal as possible.
However don't be afraid of using impure functions too.
There is lazy evaluation. See something like -[UIViewController view] property. The view won't be created when the object is created. It'll be created when caller reading view property at first time. UIImage will not be loaded until it actually being drawn. There are many implementation like this design. This kind of designs are very helpful for resource management, but if you don't know the concept of lazy evaluation, it's not easy to understand behavior of them.
There is closure. Use C-blocks as much as possible. This will simplify your life greatly. But read once more about block-memory-management before using it.
There is semi-auto GC. NSAutoreleasePool. Use -autorelease primary. Use manual -retain/-release secondary when you really need. (ex: memory optimization, explicit resource deletion)