def func(arg: String => Int): Unit = {
// body of function
}
I mean this fragment:
String => Int
Short answer
Its a function that receives a String and returns a Int
Long answer
In Scala, functions are first class citizens. That means you can store them in variables or (like in this case) pass them around as arguments.
This is how a function literal looks like
() => Unit
This is a function that receives no arguments and returns Unit (java's equivalent to void).
This would be a function that receives a String as a parameter and returns an Int:
(String) => Int
Also, scala let's you drop the parenthesis as a form of syntactic sugar, like in your example. The preceding arg: is just the name of the argument.
Inside func you would call the function received (arg) like this:
val result = arg("Some String") // this returns a Int
As mentioned in Advantages of Scala’s Type System, it is a Functional type.
The article Scala for Java Refugees Part 6: Getting Over Java describes this syntax in its section "Higher-Order Functions".
def itrate(array:Array[String], fun:(String)=>Unit) = {
for (i <- 0 to (array.length - 1)) { // anti-idiom array iteration
fun(array(i))
}
}
val a = Array("Daniel", "Chris", "Joseph", "Renee")
iterate(a, (s:String) => println(s))
See? The syntax is so natural you almost miss it.
Starting at the top, we look at the type of the fun parameter and we see the (type1, …)=>returnType syntax which indicates a functional type.
In this case, fun will be a functional which takes a single parameter of type String and returns Unit (effectively void, so anything at all).
Two lines down in the function, we see the syntax for actually invoking the functional. fun is treated just as if it were a method available within the scope, the call syntax is identical.
Veterans of the C/C++ dark-ages will recognize this syntax as being reminiscent of how function pointers were handled back-in-the-day.
The difference is, no memory leaks to worry about, and no over-verbosity introduced by too many star symbols.
In your case: def func(arg: String => Int): Unit, arg would be a function taking a String and returning an Int.
You might also see it written (perhaps by a decompiler) as
def func(arg: Function1[String, Int]): Unit = {
// body of function
}
They are precisely equivalent.
Related
In this comment, #Ben suggested that call by name is equivalent to call by value where values are zero-argument functions. If I understood correctly,
def callByName(x: => Int) = {
// some code
}
callByName(something())
is equivalent to
def callByValue(x: () => Int) = {
// same code as above, but all occurrences of x replaced with x()
}
callByValue(()=>something())
(Edit: I fixed mistake in signature as pointed out by #MichaelZajac, #LukaJacobowitz: originally, it said callByValue(x: Int).)
In other words, the whole "call by name" concept is just syntactic sugar: everything it does can be achieved (with a few extra keystrokes) using "call by value". If true, it makes it very easy to understand call by name; in fact, I've used this technique in python (python has first-class functions).
However, further down in the comments, the discussion became somewhat more confusing, and I was left with the feeling that it's not quite so simple.
So is there something more substantive to "call by name"? Or is it just an automatic creation of zero-argument functions by the compiler?
I'm assuming you meant your callByValue function to take a () => Int instead of just an Int as otherwise it wouldn't make a lot of sense.
It's pretty much exactly what you think. The compiler generates a Function0 instance. You can see this pretty nicely when you decompile Scala code with Javap.
Another thing of note is, that the generated Function0 will be reevaluated every time you use the by-name parameter inside your function, so if you only want it to be computed once you'll want to do something like this:
def callByName(x: => Int) = {
val a = x
// do something with a here
}
Here is some more information on the whole concept.
Also you can see how Scala compiles by-name parameters quite neatly in this question:
def getX[T <: X](constr: ⇒ T): Unit = {
constr
}
decompiled in Java is equivalent to:
public <T extends X> void getX(Function0<T> constr) {
constr.apply();
}
Yes, but your example isn't quite right. The signature of callByValue, as written in your question, will evaluate x before callByValue is invoked.
The following would be roughly equivalent to a call-by-name:
def callByValue(x: () => Int) = {
// same code as above, but all occurrences of x replaced with x()
}
The distinction is important, because your version of callByValue would only accept Ints, not functions that return Ints. It also wouldn't compile if you followed the procedure of replacing x with x().
But yes, a call-by-name parameter of => A is roughly equivalent to () => A, except that the former is simply more convenient to use. I say roughly because they are different types, and their applications are slightly different. You can specify () => A to be the type of something, but not => A. And of course with x: () => A, you must manually call x() instead of x.
I ran across a function that looks like this:
def doSomethingQuestionable(config: someConfig, value: String)(default: => String) : String
What is interesting is the parameterless function that gets passed in as second argument group. In the code base, the method is only ever called with a config and two strings, the latter being some default value, but as a String, not a function. Within the code body of the method, default is passed on to a method that takes 3 string arguments. So the function "default" only resolves down to a string within the body of this method.
Is there any benefit, apart from a currying usage which does not happen with this method in the code base I am going through, of defining the method this way? Why not just define it with 3 string arguments in a single argument group?
What am I missing? Some compiler advantage here? Keep in mind, I am assuming that no currying will ever be done with this, since it is a large code base, and it is not currently done with this method.
The point is to have a potentially expensive default string that is only created when you need it. You write the code as if you're creating the string to pass in, but because it's a by-name parameter ('=> String') it will actually be turned into a function that will be transparently called whenever default is referenced in the doSomethingQuestionable method.
The reason to keep it separate is in case you do want a big block of code to create that string. If you never do and never will, it may as well be
def doSomethingQuestionable(config: someConfig, value: String, default: => String): String
If you do, however,
def doSomethingQuestionable(cfg, v){
// Oh boy, something went wrong
// First we need to check if we have a database accessible
...
// (Much pain ensues)
result
}
is way better than embedding the code block as one argument in a multi-argument parameter list.
This is a parameterless function returning a String:
() => String
Which is not what you have. This,
=> <WHATEVER>
is a parameter being passed by-name instead of by-value. For example:
=> String // A string being passed by-name
=> () => String // A parameterless function returning string being passed by-name
The difference between these modes is that, on by-value, the parameter is evaluated and the resulting value is passed, whereas on by-name, the parameter is passed "as is", and evaluated each time it is used.
For example:
var x = 0
def printValue(y: Int) = println(s"I got $y. Repeating: $y.")
def printName(y: => Int) = println(s"I got $y. Repeating: $y.")
printValue { x += 1; x } // I got 1. Repeating: 1.
printName { x += 1; x } // I got 2. Repeating: 3.
Now, as to why the method splits that into a second parameter, it's just a matter of syntactic pleasantness. Take the method foldLeft, for example, which is similarly defined. You can write something like this:
(1 to 10).foldLeft(0) { (acc, x) =>
println(s"Accumulator: $acc\tx: $x\tacc+x: ${acc+x}")
acc+x
}
If foldLeft was defined as a single parameter list, it would look like this:
(1 to 10).foldLeft(0, { (acc, x) =>
println(s"Accumulator: $acc\tx: $x\tacc+x: ${acc+x}")
acc+x
})
Not much different, granted, but worse looking. I mean, you don't write this thing below, do you?
if (x == y, {
println("Same thing")
}, {
println("Different thing"
})
I am new to Scala, and am learning it by going over some Play code. I have had a good read of the major concepts of Scala and am comfortable with functional programming having done some Haskell and ML.
I am really struggling to read this code, at the level of the syntax and the programming paradigms alone. I understand what the code is supposed to do, but not how it does it because I can't figure out the syntax.
// -- Home page
def index(ref: Option[String]): Action[AnyContent] = Prismic.action(ref) { implicit request =>
for {
someDocuments <- ctx.api.forms("everything").ref(ctx.ref).submit()
} yield {
Ok(views.html.index(someDocuments))
}
}
(Prismic is an API separate to Play and is not really that relevant). How would I describe this function (or is it a method??) to another developer over the phone: in other words, using English. For example in this code:
def add(a: Int, b: Int): Int = a + b
I would say "add is a function which takes two integers, adds them together and returns the result as another integer".
In the Play code above I don't even know how to describe it after getting to "index is a function which takes an Option of a String and returns an Action of type AnyContent by ....."
The bit after the '=' and then the curly braces and the '=>' scare me! How do I read them? And is the functional or OO?
Thanks for your assistance
Let's reduce it to this:
def index(ref: Option[String]): Action[AnyContent] = Prismic.action(ref)(function)
That's better, isn't it? index is a function from Option of String to Action of AnyContent (one word), which calls the action method of the object Prismic passing two curried parameters: ref, the parameter that index received, and a function (to be described).
So let's break down the anonymous function:
{ implicit request =>
for {
someDocuments <- ctx.api.forms("everything").ref(ctx.ref).submit()
} yield {
Ok(views.html.index(someDocuments))
}
}
First, it uses {} instead of () because Scala allows one to drop () as parameter delimiter if it's a single parameter (there are two parameter lists, but each has a single parameter), and that parameter is enclosed in {}.
So, what about {}? Well, it's an expression that contains declarations and statements, with semi-colon inference on new lines, whose value is that of the last statement. That is, the value of these two expressions is the same, 3:
{ 1; 2; 3 }
{
1
2
3
}
It's a syntactic convention to use {} when passing a function that extends for more than one line, even if, as in this case, that function could have been passed with just parenthesis.
The next thing confusing is the implicit request =>, Let's pick something simpler:
x => x * 2
That's pretty easy, right? It takes one parameter, x, and returns x * 2. In our case, it is the same thing: the function takes one parameter, request, and returns this:
for (someDocuments <- somethingSomething())
yield Ok(views.html.index(someDocuments))
That is, it calls some methods, iterate over the result, and map those results into a new value. This is a close equivalent to Haskell's do notation. You can rewrite it like below (I'm breaking it down into multiple lines for readability):
ctx
.api
.forms("everything")
.ref(ctx.ref)
.submit()
.map(someDocuments => Ok(views.html.index(someDocuments)))
So, back to our method definition, we have this:
def index(ref: Option[String]): Action[AnyContent] = Prismic.action(ref)(
implicit request =>
ctx
.api
.forms("everything")
.ref(ctx.ref)
.submit()
.map(someDocuments => Ok(views.html.index(someDocuments)))
)
The only remaining question here is what that implicit is about. Basically, it makes that parameter implicitly available through the scope of the function. Presumably, at least one of these method calls require an implicit parameter which is properly fielded by request. I could drop the implicit there an pass request explicitly, if I knew which of these methods require it, but since I don't, I'm skipping that.
An alternate way of writing it would be:
def index(ref: Option[String]): Action[AnyContent] = Prismic.action(ref)({
request =>
implicit val req = request
ctx
.api
.forms("everything")
.ref(ctx.ref)
.submit()
.map(someDocuments => Ok(views.html.index(someDocuments)))
})
Here I added {} back because I added a declaration to the body of the function, though I decided not to drop the parenthesis, which I could have.
Something like this:
index is a function which takes an Option of a String and returns an Action of type AnyContent. It calls the method action that takes as a first argument an Option and as a second argument a method that assumes an implicit value request of type Request is in scope. This method uses a For-comprehension that calls the submit method which returns an Option or a Future and then in case its execution is successful, it yields the result Ok(...) that will be wrapped in the Action returned by the action method of Prismic.
Prismic.action is a method that takes 2 groups of arguments (a.k.a. currying).
The first is ref
The second is { implicit request => ...}, a function defined in a block of a code
more information on Action
I've read a lot of code snippets in scala that make use of the symbol =>, but I've never really been able to comprehend it. I've tried to search in the internet, but couldn't find anything comprehensive. Any pointers/explanation about how the symbol is/can be used will be really helpful.
(More specifially, I also want to know how the operator comes into picture in function literals)
More than passing values/names, => is used to define a function literal, which is an alternate syntax used to define a function.
Example time. Let's say you have a function that takes in another function. The collections are full of them, but we'll pick filter. filter, when used on a collection (like a List), will take out any element that causes the function you provide to return false.
val people = List("Bill Nye", "Mister Rogers", "Mohandas Karamchand Gandhi", "Jesus", "Superman", "The newspaper guy")
// Let's only grab people who have short names (less than 10 characters)
val shortNamedPeople = people.filter(<a function>)
We could pass in an actual function from somewhere else (def isShortName(name: String): Boolean, perhaps), but it would be nicer to just place it right there. Alas, we can, with function literals.
val shortNamedPeople = people.filter( name => name.length < 10 )
What we did here is create a function that takes in a String (since people is of type List[String]), and returns a Boolean. Pretty cool, right?
This syntax is used in many contexts. Let's say you want to write a function that takes in another function. This other function should take in a String, and return an Int.
def myFunction(f: String => Int): Int = {
val myString = "Hello!"
f(myString)
}
// And let's use it. First way:
def anotherFunction(a: String): Int = {
a.length
}
myFunction(anotherFunction)
// Second way:
myFunction((a: String) => a.length)
That's what function literals are. Going back to by-name and by-value, there's a trick where you can force a parameter to not be evaluated until you want to. The classic example:
def logger(message: String) = {
if(loggingActivated) println(message)
}
This looks alright, but message is actually evaluated when logger is called. What if message takes a while to evaluate? For example, logger(veryLongProcess()), where veryLongProcess() returns a String. Whoops? Not really. We can use our knowledge about function literals to force veryLongProcess() not to be called until it is actually needed.
def logger(message: => String) = {
if(loggingActivated) println(message)
}
logger(veryLongProcess()) // Fixed!
logger is now taking in a function that takes no parameters (hence the naked => on the left side). You can still use it as before, but now, message is only evaluated when it's used (in the println).
I have a loan pattern that applies a function n times where 'i' is the incrementing variable. "Occasionally", I want the function passed in to have access to 'i'....but I don't want to require all functions passed in to require defining a param to accept 'i'. Example below...
def withLoaner = (n:Int) => (op:(Int) => String) => {
val result = for(i <- 1 to n) yield op(i)
result.mkString("\n")
}
def bob = (x:Int) => "bob" // don't need access to i. is there a way use () => "bob" instead?
def nums = (x:Int) => x.toString // needs access to i, define i as an input param
println(withLoaner(3)(bob))
println(withLoaner(3)(nums))
def withLoaner(n: Int) = new {
def apply(op: Int => String) : String = (1 to n).map(op).mkString("\n")
def apply(op: () => String) : String = apply{i: Int => op()}
}
(not sure how it is related to the loan pattern)
Edit Little explanation as requested in comment.
Not sure what you know and don't know of scala and what you don't undestand in that code. so sorry if what I just belabor the obvious.
First, a scala program consist of traits/classes (also singleton object) and methods. Everything that is done is done by methods (leaving constructor aside). Functions (as opposed to methods) are instances of (subtypes of) the various FunctionN traits (N the number of arguments). Each of them has as apply method that is the actual implemention.
If you write
val inc = {i: Int => i + 1}
it is desugared to
val inc = new Function1[Int, Int] {def apply(i: Int) = i + 1}
(defines an anonymous class extending Function1, with given apply method and creating an instance)
So writing a function has rather more weight than a simple method. Also you cannot have overloading (several methods with the same name, differing by the signature, just what I did above), nor use named arguments, or default value for arguments.
On the other hand, functions are first classes values (they can be passed as arguments, returned as result) while methods are not. They are automatically converted to functions when needed, however there may be some edges cases when doing that. If a method is intended solely to be used as a function value, rather than called as a method, it might be better to write a function.
A function f, with its apply method, is called with f(x) rather than f.apply(x) (which works too), because scala desugars function call notation on a value (value followed by parentheses and 0 or more args) to a call to method apply. f(x) is syntactic sugar for f.apply(x). This works whatever the type of f, it does not need to be one of the FunctionN.
What is done in withLoaner is returning an object (of an anonymous type, but one could have defined a class separately and returned an instance of it). The object has two apply methods, one accepting an Int => String, the other one an () => String. When you do withLoaner(n)(f) it means withLoaner(n).apply(f). The appropriate apply method is selected, if f has the proper type for one of them, otherwise, compile error.
Just in case you wonder withLoaner(n) does not mean withLoaner.apply(n) (or it would never stop, that could just as well mean withLoaner.apply.apply(n)), as withLoaner is a method, not a value.