How should I read this piece of Scala (Play) code? - scala

I am new to Scala, and am learning it by going over some Play code. I have had a good read of the major concepts of Scala and am comfortable with functional programming having done some Haskell and ML.
I am really struggling to read this code, at the level of the syntax and the programming paradigms alone. I understand what the code is supposed to do, but not how it does it because I can't figure out the syntax.
// -- Home page
def index(ref: Option[String]): Action[AnyContent] = Prismic.action(ref) { implicit request =>
for {
someDocuments <- ctx.api.forms("everything").ref(ctx.ref).submit()
} yield {
Ok(views.html.index(someDocuments))
}
}
(Prismic is an API separate to Play and is not really that relevant). How would I describe this function (or is it a method??) to another developer over the phone: in other words, using English. For example in this code:
def add(a: Int, b: Int): Int = a + b
I would say "add is a function which takes two integers, adds them together and returns the result as another integer".
In the Play code above I don't even know how to describe it after getting to "index is a function which takes an Option of a String and returns an Action of type AnyContent by ....."
The bit after the '=' and then the curly braces and the '=>' scare me! How do I read them? And is the functional or OO?
Thanks for your assistance

Let's reduce it to this:
def index(ref: Option[String]): Action[AnyContent] = Prismic.action(ref)(function)
That's better, isn't it? index is a function from Option of String to Action of AnyContent (one word), which calls the action method of the object Prismic passing two curried parameters: ref, the parameter that index received, and a function (to be described).
So let's break down the anonymous function:
{ implicit request =>
for {
someDocuments <- ctx.api.forms("everything").ref(ctx.ref).submit()
} yield {
Ok(views.html.index(someDocuments))
}
}
First, it uses {} instead of () because Scala allows one to drop () as parameter delimiter if it's a single parameter (there are two parameter lists, but each has a single parameter), and that parameter is enclosed in {}.
So, what about {}? Well, it's an expression that contains declarations and statements, with semi-colon inference on new lines, whose value is that of the last statement. That is, the value of these two expressions is the same, 3:
{ 1; 2; 3 }
{
1
2
3
}
It's a syntactic convention to use {} when passing a function that extends for more than one line, even if, as in this case, that function could have been passed with just parenthesis.
The next thing confusing is the implicit request =>, Let's pick something simpler:
x => x * 2
That's pretty easy, right? It takes one parameter, x, and returns x * 2. In our case, it is the same thing: the function takes one parameter, request, and returns this:
for (someDocuments <- somethingSomething())
yield Ok(views.html.index(someDocuments))
That is, it calls some methods, iterate over the result, and map those results into a new value. This is a close equivalent to Haskell's do notation. You can rewrite it like below (I'm breaking it down into multiple lines for readability):
ctx
.api
.forms("everything")
.ref(ctx.ref)
.submit()
.map(someDocuments => Ok(views.html.index(someDocuments)))
So, back to our method definition, we have this:
def index(ref: Option[String]): Action[AnyContent] = Prismic.action(ref)(
implicit request =>
ctx
.api
.forms("everything")
.ref(ctx.ref)
.submit()
.map(someDocuments => Ok(views.html.index(someDocuments)))
)
The only remaining question here is what that implicit is about. Basically, it makes that parameter implicitly available through the scope of the function. Presumably, at least one of these method calls require an implicit parameter which is properly fielded by request. I could drop the implicit there an pass request explicitly, if I knew which of these methods require it, but since I don't, I'm skipping that.
An alternate way of writing it would be:
def index(ref: Option[String]): Action[AnyContent] = Prismic.action(ref)({
request =>
implicit val req = request
ctx
.api
.forms("everything")
.ref(ctx.ref)
.submit()
.map(someDocuments => Ok(views.html.index(someDocuments)))
})
Here I added {} back because I added a declaration to the body of the function, though I decided not to drop the parenthesis, which I could have.

Something like this:
index is a function which takes an Option of a String and returns an Action of type AnyContent. It calls the method action that takes as a first argument an Option and as a second argument a method that assumes an implicit value request of type Request is in scope. This method uses a For-comprehension that calls the submit method which returns an Option or a Future and then in case its execution is successful, it yields the result Ok(...) that will be wrapped in the Action returned by the action method of Prismic.

Prismic.action is a method that takes 2 groups of arguments (a.k.a. currying).
The first is ref
The second is { implicit request => ...}, a function defined in a block of a code
more information on Action

Related

Scala Function Currying and call By name Functions, GenricTypes

I am bit new to scala curying and the call by name functions. I am facing difficulty in understanding the Syntax. What is the fllow of the function why there is need of returning the f(result) and what function is applied on it further.
def withScan[R](table: Table, scan: Scan)(f: (Seq[Result]) => R): R = {
var resultScanner: ResultScanner = null
try {
resultScanner = table.getScanner(scan)
val it: util.Iterator[Result] = resultScanner.iterator()
val results: mutable.ArrayBuffer[Result] = ArrayBuffer()
while (it.hasNext) {
results += it.next()
}
f(results)
} finally {
if (resultScanner != null)
resultScanner.close()
}
}
Let's look at just the function signature
def withScan[R](table: Table, scan: Scan)(f: (Seq[Result]) => R): R
Firstly, ignore the fancy currying syntax for now as you can always rewrite a curried function into a normal function by putting all the parameters in one parameter list i.e.
def withScan[R](table: Table, scan: Scan, f: Seq[Result] => R): R
Secondly, notice the last parameter is a function on its own and we don't know what it does yet. withScan will take a function somebody gives it and use that function on something. We might be interested in why someone needs such a function. Since we need to deal with a lot of resources that need to be opened and closed properly such as File, DatabaseConnection, Socket,... we will then repeat ourselves with the code that closes the resources or even worse, forget to close the resources. Hence we want to factor the boring common code out to give you a convenient function: if you use withScan to access the table, we will somehow give you the Result so that you can work on that and also we will make sure to close the resources properly for you so that you can just focus on the interesting operation. This is call the "loan pattern"
Now let's go back to the currying syntax. Although currying has other interesting use cases, I believe the reason it is written in this style is in Scala, you can use curly braces block to pass the parameter to the function i.e. one can use the function above like this
withScan(myTable, myScan) { results =>
//do whatever you want with the results
}
This looks just like a built in control flow like if-else or for loop!
As I understand that properly this is function which take some Table (probably db table) and try to scna this tabel using argument scan. After you collect data using relevant scanner this method just map collected sequence to object of type R.
For such mapping it is used f function.
You can use this function:
val list: List[Result] = withScan(table, scanner)(results => results.toList)
Or
val list: List[Result] = withScan(table, scanner)(results => ObjectWhichKeepAllData(results))
IMHO, it is not very well written code, and also I feel that the better would be to do mapping thing outside of this function. Let client do the mapping (which BTW should be for every single result) and leave scanning only for that function.
This is an example of a higher-order function: a function which takes another function as a parameter.
The function appears to do the following:
- opens the passed in table with the passed in scanner
- parses the table with an iterator, populating entries in a local ArrayBuffer
- calls a function, passed in by the caller, on the sequence of entries that have been parsed.
The function parameter allows this function to be used to carry out any operation on the scanned information, depending on the function passed in.
The function prototype could equally have been declared:
def withScan[R](table: Table, scan: Scan, f: (Seq[Result]) => R): R = {
The function has been declared with two argument lists; this is an example of currying. This is a benefit when calling the function, as it allows the method to be called with a clearer syntax.
Consider a function that might be passed into this function:
def getHighestValueEntry(results: Seq[Result]): R = {
Without currying, the function would be called like this:
withScan[R](table, scan, results => getHighestValueEntry(results))
With currying the function can be called in a manner that makes the function parameter stand out more clearly. This is helped by the ability in Scala to use curly braces instead of parentheses to surround the arguments to a function, if you are only passing in one argument:
withScan(table, scan) { results =>
getHighestValueEntry(results) }

What does the word "Action" do in a Scala function definition using the Play framework?

I am developing Play application and I've just started with Scala. I see that there is this word Action after the equals sign in the function below and before curly brace.
def index = Action {
Ok(views.html.index("Hi there"))
}
What does this code do? I've seen it used with def index = { but not with the word before the curly brace.
I would assume that the name of the function is index. But I do not know what the word Action does in this situation.
This word is a part of Play Framework, and it's an object, which has method apply(block: ⇒ Result), so your code is actually:
def index: Action[AnyContent] = Action.apply({
Ok.apply(views.html.index("Hi there"))
})
Your index method returns an instance of the class Action[AnyContent].
By the way, you're passing a block of code {Ok(...)} to apply method, which (block of code) is actually acts as anonymous function here, because the required type for apply's input is not just Result but ⇒ Result, which means that it takes an anonymous function with no input parameters, which returns Result. So, your Ok-block will be executed when container, received your instance of class Action (from index method), decided to execute this block. Which simply means that you're just describing an action here - not executing - it will be actually executed when Play received your request - and find binding to your action inside routing file.
Also, you don't have to use def here as you always return same action - val or lazy val is usually enough. You will need a def only if you actually want to pass some parameter from routing table (for instance):
GET /clients/:id controllers.SomeController.index(id: Long)
def index(id: Long) = Action { ... } // new action generated for every new request here
Another possible approach is to choose Action, based on parameter:
def index(id: Long) = {
if (id == 0) Action {...} else Action{...}
}
But uasually you can use routing table itself for that, which is better for decoupling. This example just shows that Action is nothing more than return value.
Update for #Kazuya
val method1 = Action{...} //could be def too, no big difference here
// this (code inside Action) gonna be called separately after "index" (if method2 is requested of course)
// notice that it needs the whole request, so it (request) should be completely parsed at the time
val method2 = Action{ req => // you can extract additional params from request
val param1 = req.headers("header1")
...
}
//This is gonna be called first, notice that Play doesn't need the whole request body here, so it might not even be parsed on this stage
def index(methodName: String) = methodName match {
case "method1" => method1
case "method2" => method2
}
GWT/Scala.js use simillar approach for client-server interaction. This is just one possible solution to explain importance of the parameter "methodName" passed from routing table. So, action could be thought as a wrapper over function that in its turn represents a reference to OOP-method, which makes it useful for both REST and RPC purposes.
The other answers deal with your specific case. You asked about the general case, however, so I'll attempt to answer from that perspective.
First off, def is used to define a method, not a function (better to learn that difference now). But, you're right, index is the name of that method.
Now, unlike other languages you might be familiar with (e.g., C, Java), Scala lets you define methods with an expression (as suggested by the use of the assignment operator syntax, =). That is, everything after the = is an expression that will be evaluated to a value each time the method is invoked.
So, whereas in Java you have to say:
public int three() { return 3; }
In Scala, you can just say:
def three = 3
Of course, the expression is usually more complicated (as in your case). It could be a block of code, like you're more used to seeing, in which case the value is that of the last expression in the block:
def three = {
val a = 1
val b = 2
a + b
}
Or it might involve a method invocation on some other object:
def three = Numbers.add(1, 2)
The latter is, in fact, exactly what's going on in your specific example, although it requires a bit more explanation to understand why. There are two bits of magic involved:
If an object has an apply method, then you can treat the object as if it were a function. You can say, for example, Add(1, 2) when you really mean Add.apply(1,2) (assuming there's an Add object with an apply method, of course). And just to be clear, it doesn't have to be an object defined with the object keyword. Any object with a suitable apply method will do.
If a method has a single by-name parameter (e.g., def ifWaterBoiling(fn: => Tea)), then you can invoke the method like ifWaterBoiling { makeTea }. The code in that block is evaluated lazily (and may not be evaluated at all). This would be equivalent to writing ifWaterBoiling({ makeTea }). The { makeTea } part just defines an expression that gets passed in, unevaluated, for the fn parameter.
Its the Action being called on with an expression block as argument. (The apply method is used under the hood).
Action.apply({
Ok("Hello world")
})
A simple example (from here) is as follows (look at comments in code):
case class Logging[A](action: Action[A]) extends Action[A] {
def apply(request: Request[A]): Result = {// apply method which is called on expression
Logger.info("Calling action")
action(request) // action being called on further with the request provided to Logging Action
}
lazy val parser = action.parser
}
Now you can use it to wrap any other action value:
def index = Logging { // Expression argument starts
Action { // Action argument (goes under request)
Ok("Hello World")
}
}
Also, the case you mentioned for def index = { is actually returning Unit like: def index: Unit = {.

Scala no argument string function vs typed String parameter

I ran across a function that looks like this:
def doSomethingQuestionable(config: someConfig, value: String)(default: => String) : String
What is interesting is the parameterless function that gets passed in as second argument group. In the code base, the method is only ever called with a config and two strings, the latter being some default value, but as a String, not a function. Within the code body of the method, default is passed on to a method that takes 3 string arguments. So the function "default" only resolves down to a string within the body of this method.
Is there any benefit, apart from a currying usage which does not happen with this method in the code base I am going through, of defining the method this way? Why not just define it with 3 string arguments in a single argument group?
What am I missing? Some compiler advantage here? Keep in mind, I am assuming that no currying will ever be done with this, since it is a large code base, and it is not currently done with this method.
The point is to have a potentially expensive default string that is only created when you need it. You write the code as if you're creating the string to pass in, but because it's a by-name parameter ('=> String') it will actually be turned into a function that will be transparently called whenever default is referenced in the doSomethingQuestionable method.
The reason to keep it separate is in case you do want a big block of code to create that string. If you never do and never will, it may as well be
def doSomethingQuestionable(config: someConfig, value: String, default: => String): String
If you do, however,
def doSomethingQuestionable(cfg, v){
// Oh boy, something went wrong
// First we need to check if we have a database accessible
...
// (Much pain ensues)
result
}
is way better than embedding the code block as one argument in a multi-argument parameter list.
This is a parameterless function returning a String:
() => String
Which is not what you have. This,
=> <WHATEVER>
is a parameter being passed by-name instead of by-value. For example:
=> String // A string being passed by-name
=> () => String // A parameterless function returning string being passed by-name
The difference between these modes is that, on by-value, the parameter is evaluated and the resulting value is passed, whereas on by-name, the parameter is passed "as is", and evaluated each time it is used.
For example:
var x = 0
def printValue(y: Int) = println(s"I got $y. Repeating: $y.")
def printName(y: => Int) = println(s"I got $y. Repeating: $y.")
printValue { x += 1; x } // I got 1. Repeating: 1.
printName { x += 1; x } // I got 2. Repeating: 3.
Now, as to why the method splits that into a second parameter, it's just a matter of syntactic pleasantness. Take the method foldLeft, for example, which is similarly defined. You can write something like this:
(1 to 10).foldLeft(0) { (acc, x) =>
println(s"Accumulator: $acc\tx: $x\tacc+x: ${acc+x}")
acc+x
}
If foldLeft was defined as a single parameter list, it would look like this:
(1 to 10).foldLeft(0, { (acc, x) =>
println(s"Accumulator: $acc\tx: $x\tacc+x: ${acc+x}")
acc+x
})
Not much different, granted, but worse looking. I mean, you don't write this thing below, do you?
if (x == y, {
println("Same thing")
}, {
println("Different thing"
})

Scala: Why use implicit on function argument?

I have a following function:
def getIntValue(x: Int)(implicit y: Int ) : Int = {x + y}
I see above declaration everywhere. I understand what above function is doing. It is a currying function which takes two arguments. If you omit the second argument, it will invoke implicit definition which returns int instead. So I think it is something very similar to defining a default value for the argument.
implicit val temp = 3
scala> getIntValue(3)
res8: Int = 6
I was wondering what are the benefits of above declaration?
Here's my "pragmatic" answer: you typically use currying as more of a "convention" than anything else meaningful. It comes in really handy when your last parameter happens to be a "call by name" parameter (for example: : => Boolean):
def transaction(conn: Connection)(codeToExecuteInTransaction : => Boolean) = {
conn.startTransaction // start transaction
val booleanResult = codeToExecuteInTransaction //invoke the code block they passed in
//deal with errors and rollback if necessary, or commit
//return connection to connection pool
}
What this is saying is "I have a function called transaction, its first parameter is a Connection and its second parameter will be a code-block".
This allows us to use this method like so (using the "I can use curly brace instead of parenthesis rule"):
transaction(myConn) {
//code to execute in a transaction
//the code block's last executable statement must be a Boolean as per the second
//parameter of the transaction method
}
If you didn't curry that transaction method, it would look pretty unnatural doing this:
transaction(myConn, {
//code block
})
How about implicit? Yes it can seem like a very ambiguous construct, but you get used to it after a while, and the nice thing about implicit functions is they have scoping rules. So this means for production, you might define an implicit function for getting that database connection from the PROD database, but in your integration test you'll define an implicit function that will superscede the PROD version, and it will be used to get a connection from a DEV database instead for use in your test.
As an example, how about we add an implicit parameter to the transaction method?
def transaction(implicit conn: Connection)(codeToExecuteInTransaction : => Boolean) = {
}
Now, assuming I have an implicit function somewhere in my code base that returns a Connection, like so:
def implicit getConnectionFromPool() : Connection = { ...}
I can execute the transaction method like so:
transaction {
//code to execute in transaction
}
and Scala will translate that to:
transaction(getConnectionFromPool) {
//code to execute in transaction
}
In summary, Implicits are a pretty nice way to not have to make the developer provide a value for a required parameter when that parameter is 99% of the time going to be the same everywhere you use the function. In that 1% of the time you need a different Connection, you can provide your own connection by passing in a value instead of letting Scala figure out which implicit function provides the value.
In your specific example there are no practical benefits. In fact using implicits for this task will only obfuscate your code.
The standard use case of implicits is the Type Class Pattern. I'd say that it is the only use case that is practically useful. In all other cases it's better to have things explicit.
Here is an example of a typeclass:
// A typeclass
trait Show[a] {
def show(a: a): String
}
// Some data type
case class Artist(name: String)
// An instance of the `Show` typeclass for that data type
implicit val artistShowInstance =
new Show[Artist] {
def show(a: Artist) = a.name
}
// A function that works for any type `a`, which has an instance of a class `Show`
def showAListOfShowables[a](list: List[a])(implicit showInstance: Show[a]): String =
list.view.map(showInstance.show).mkString(", ")
// The following code outputs `Beatles, Michael Jackson, Rolling Stones`
val list = List(Artist("Beatles"), Artist("Michael Jackson"), Artist("Rolling Stones"))
println(showAListOfShowables(list))
This pattern originates from a functional programming language named Haskell and turned out to be more practical than the standard OO practices for writing a modular and decoupled software. The main benefit of it is it allows you to extend the already existing types with new functionality without changing them.
There's plenty of details unmentioned, like syntactic sugar, def instances and etc. It is a huge subject and fortunately it has a great coverage throughout the web. Just google for "scala type class".
There are many benefits, outside of your example.
I'll give just one; at the same time, this is also a trick that you can use on certain occasions.
Imagine you create a trait that is a generic container for other values, like a list, a set, a tree or something like that.
trait MyContainer[A] {
def containedValue:A
}
Now, at some point, you find it useful to iterate over all elements of the contained value.
Of course, this only makes sense if the contained value is of an iterable type.
But because you want your class to be useful for all types, you don't want to restrict A to be of a Seq type, or Traversable, or anything like that.
Basically, you want a method that says: "I can only be called if A is of a Seq type."
And if someone calls it on, say, MyContainer[Int], that should result in a compile error.
That's possible.
What you need is some evidence that A is of a sequence type.
And you can do that with Scala and implicit arguments:
trait MyContainer[A] {
def containedValue:A
def aggregate[B](f:B=>B)(implicit ev:A=>Seq[B]):B =
ev(containedValue) reduce f
}
So, if you call this method on a MyContainer[Seq[Int]], the compiler will look for an implicit Seq[Int]=>Seq[B].
That's really simple to resolve for the compiler.
Because there is a global implicit function that's called identity, and it is always in scope.
Its type signature is something like: A=>A
It simply returns whatever argument is passed to it.
I don't know how this pattern is called. (Can anyone help out?)
But I think it's a neat trick that comes in handy sometimes.
You can see a good example of that in the Scala library if you look at the method signature of Seq.sum.
In the case of sum, another implicit parameter type is used; in that case, the implicit parameter is evidence that the contained type is numeric, and therefore, a sum can be built out of all contained values.
That's not the only use of implicits, and certainly not the most prominent, but I'd say it's an honorable mention. :-)

Can anyone explain how the symbol "=>" is used in Scala

I've read a lot of code snippets in scala that make use of the symbol =>, but I've never really been able to comprehend it. I've tried to search in the internet, but couldn't find anything comprehensive. Any pointers/explanation about how the symbol is/can be used will be really helpful.
(More specifially, I also want to know how the operator comes into picture in function literals)
More than passing values/names, => is used to define a function literal, which is an alternate syntax used to define a function.
Example time. Let's say you have a function that takes in another function. The collections are full of them, but we'll pick filter. filter, when used on a collection (like a List), will take out any element that causes the function you provide to return false.
val people = List("Bill Nye", "Mister Rogers", "Mohandas Karamchand Gandhi", "Jesus", "Superman", "The newspaper guy")
// Let's only grab people who have short names (less than 10 characters)
val shortNamedPeople = people.filter(<a function>)
We could pass in an actual function from somewhere else (def isShortName(name: String): Boolean, perhaps), but it would be nicer to just place it right there. Alas, we can, with function literals.
val shortNamedPeople = people.filter( name => name.length < 10 )
What we did here is create a function that takes in a String (since people is of type List[String]), and returns a Boolean. Pretty cool, right?
This syntax is used in many contexts. Let's say you want to write a function that takes in another function. This other function should take in a String, and return an Int.
def myFunction(f: String => Int): Int = {
val myString = "Hello!"
f(myString)
}
// And let's use it. First way:
def anotherFunction(a: String): Int = {
a.length
}
myFunction(anotherFunction)
// Second way:
myFunction((a: String) => a.length)
That's what function literals are. Going back to by-name and by-value, there's a trick where you can force a parameter to not be evaluated until you want to. The classic example:
def logger(message: String) = {
if(loggingActivated) println(message)
}
This looks alright, but message is actually evaluated when logger is called. What if message takes a while to evaluate? For example, logger(veryLongProcess()), where veryLongProcess() returns a String. Whoops? Not really. We can use our knowledge about function literals to force veryLongProcess() not to be called until it is actually needed.
def logger(message: => String) = {
if(loggingActivated) println(message)
}
logger(veryLongProcess()) // Fixed!
logger is now taking in a function that takes no parameters (hence the naked => on the left side). You can still use it as before, but now, message is only evaluated when it's used (in the println).