How do I calculate result for every value in a matrix in MATLAB - matlab

Keeping simple, take a matrix of ones i.e.
U_iso = ones(72,37)
and some parameters
ThDeg = 0:5:180;
dtheta = 5*pi/180;
dphi = 5*pi/180;
Th = ThDeg*pi/180;
Now the code is
omega_iso = 0;
for i = 1:72
for j=1:37
omega_iso = omega_iso + U_iso(i,j)*sin(Th(j))*dphi*dtheta;
end
end
and
D_iso = (4 * pi)/omega_iso
This code is fine. It take a matrix with dimension 72*37. The loop is an approximation of the integral which is further divided by 4pi to get ONE value of directivity of antenna.
Now this code gives one value which will be around 1.002.
My problem is I dont need 1 value. I need a 72*37 matrix as my answer where the above integral approximation is implemented on each cell of the 72 * 37 matrix. and thus the Directviity 'D' also results in a matrix of same size with each cell giving the same value.
So all we have to do is instead of getting 1 value, we need value at each cell.
Can anyone please help.

You talk about creating a result that is a function essentially of the elements of U. However, in no place is that code dependent on the elements of U. Look carefully at what you have written. While you do use the variable U_iso, never is any element of U employed anywhere in that code as you have written it.
So while you talk about defining this for a matrix U, that definition is meaningless. So far, it appears that a call to repmat at the very end would create a matrix of the desired size, and clearly that is not what you are looking for.
Perhaps you tried to make the problem simple for ease of explanation. But what you did was to over-simplify, not leaving us with something that even made any sense. Please explain your problem more clearly and show code that is consistent with your explanation, for a better answer than I can provide so far.
(Note: One option MIGHT be to use arrayfun. Or the answer to this question might be more trivial, using simple vectorized operations. I cannot know at this point.)
EDIT:
Your question is still unanswerable. This loop creates a single scalar result, essentially summing over the entire array. You don't say what you mean for the integral to be computed for each element of U_iso, since you are already summing over the entire array. Please learn to be accurate in your questions, otherwise we are just guessing as to what you mean.
My best guess at the moment is that you might wish to compute a cumulative integral, in two dimensions. cumtrapz can help you there, IF that is your goal. But I'm not sure it is your goal, since your explanation is so incomplete.
You say that you wish to get the same value in each cell of the result. If that is what you wish, then a call to repmat at the end will do what you wish.

Related

Matlab: need some help for a seemingly simple vectorization of an operation

I would like to optimize this piece of Matlab code but so far I have failed. I have tried different combinations of repmat and sums and cumsums, but all my attempts seem to not give the correct result. I would appreciate some expert guidance on this tough problem.
S=1000; T=10;
X=rand(T,S),
X=sort(X,1,'ascend');
Result=zeros(S,1);
for c=1:T-1
for cc=c+1:T
d=(X(cc,:)-X(c,:))-(cc-c)/T;
Result=Result+abs(d');
end
end
Basically I create 1000 vectors of 10 random numbers, and for each vector I calculate for each pair of values (say the mth and the nth) the difference between them, minus the difference (n-m). I sum over of possible pairs and I return the result for every vector.
I hope this explanation is clear,
Thanks a lot in advance.
It is at least easy to vectorize your inner loop:
Result=zeros(S,1);
for c=1:T-1
d=(X(c+1:T,:)-X(c,:))-((c+1:T)'-c)./T;
Result=Result+sum(abs(d),1)';
end
Here, I'm using the new automatic singleton expansion. If you have an older version of MATLAB you'll need to use bsxfun for two of the subtraction operations. For example, X(c+1:T,:)-X(c,:) is the same as bsxfun(#minus,X(c+1:T,:),X(c,:)).
What is happening in the bit of code is that instead of looping cc=c+1:T, we take all of those indices at once. So I simply replaced cc for c+1:T. d is then a matrix with multiple rows (9 in the first iteration, and one fewer in each subsequent iteration).
Surprisingly, this is slower than the double loop, and similar in speed to Jodag's answer.
Next, we can try to improve indexing. Note that the code above extracts data row-wise from the matrix. MATLAB stores data column-wise. So it's more efficient to extract a column than a row from a matrix. Let's transpose X:
X=X';
Result=zeros(S,1);
for c=1:T-1
d=(X(:,c+1:T)-X(:,c))-((c+1:T)-c)./T;
Result=Result+sum(abs(d),2);
end
This is more than twice as fast as the code that indexes row-wise.
But of course the same trick can be applied to the code in the question, speeding it up by about 50%:
X=X';
Result=zeros(S,1);
for c=1:T-1
for cc=c+1:T
d=(X(:,cc)-X(:,c))-(cc-c)/T;
Result=Result+abs(d);
end
end
My takeaway message from this exercise is that MATLAB's JIT compiler has improved things a lot. Back in the day any sort of loop would halt code to a grind. Today it's not necessarily the worst approach, especially if all you do is use built-in functions.
The nchoosek(v,k) function generates all combinations of the elements in v taken k at a time. We can use this to generate all possible pairs of indicies then use this to vectorize the loops. It appears that in this case the vectorization doesn't actually improve performance (at least on my machine with 2017a). Maybe someone will come up with a more efficient approach.
idx = nchoosek(1:T,2);
d = bsxfun(#minus,(X(idx(:,2),:) - X(idx(:,1),:)), (idx(:,2)-idx(:,1))/T);
Result = sum(abs(d),1)';
Update: here are the results for the running times for the different proposals (10^5 trials):
So it looks like the transformation of the matrix is the most efficient intervention, and my original double-loop implementation is, amazingly, the best compared to the vectorized versions. However, in my hands (2017a) the improvement is only 16.6% compared to the original using the mean (18.2% using the median).
Maybe there is still room for improvement?

Avoiding for loop with cells and matrixes involved

I am trying to avoid the for loops and I have been reading through all the old posts there are about it but I am not able to solve my problem. I am new in MATLAB, so apologies for my ignorance.
The thing is that I have a 300x2 cell and in each one I have a 128x128x256 matrix. Each one is an image with 128x128 pixels and 256 channels per pixel. In the first column of the 300x2 cell I have my parallel intensity values and in the second one my perpendicular intensity values.
What I want to do is to take every pixel of every image (for each component) and sum the intensity values channel by channel.
The code I have is the following:
Image_par_channels=zeros(128,128,256);
Image_per_channels=zeros(128,128,256);
Image_tot_channels=zeros(128,128,256);
for a=1:128
for b=1:128
for j=1:256
for i=1:numfiles
Image_par_channels(a,b,j)=Image_par_channels(a,b,j)+Image_cell_par_per{i,1}(a,b,j);
Image_per_channels(a,b,j)=Image_per_channels(a,b,j)+Image_cell_par_per{i,2}(a,b,j);
end
Image_tot_channels(a,b,j)=Image_par_channels(a,b,j)+2*G*Image_per_channels(a,b,j);
end
end
end
I think I could speed it up introducing (:,:,j) instead of specifying a and b. But still a for loop. I am trying to use cellfun without any success due to my lack of expertise. Could you please give me a hand?
I would really appreciate it.
Many thanks and have a nice day!
Y
I believe you could do something like
Image_par_channels=zeros(128,128,256);
Image_per_channels=zeros(128,128,256);
Image_tot_channels=zeros(128,128,256);
for i=1:numfiles
Image_par_channels = Image_par_channels + Image_cell_par_per{i,1};
Image_per_channels = Image_per_channels + Image_cell_par_per{i,2};
end
Image_tot_channels = Image_par_channels + 2*G*Image_per_channels;
I haven't work with matlab in a long time, but I seem to recall you can do something like this. g is a constant.
EDIT:
Removed the +=. Incremental assignment is not an operator available in matlab. You should also note that Image_tot_channels can be build directly in the loop, if you don't need the other two variables later.

vectorizing "for" loop with bidirectionally related variables

Last week I asked the following:
https://stackoverflow.com/questions/32658199/vectorizing-gibbs-sampler-in-matlab
Perhaps it was not that clear what I want to do, so this might be more clear.
I would like to vectorize a "for" loop in matlab, where some variables inside of the loop are bidirectionally related. So, here is an example:
A=2;
B=3;
for i=1:10000
A=3*B;
B=exp(A*(-1/2))
end
Thank you once again for your time.
A quick Excel calculation indicates that this quickly converges to 0.483908 (after much less than 10000 loops - so one way of speeding it up would be to check for convergence). If A and B are always 2 and 3 respectively, you could just replace the loop with this value.
Alternatively, using some series analysis you might be able to come up with an analytical expression for B when i is large - although with the nested exponents deriving this is a bit beyond my own abilities!
Edit
A bit of googling reveals this. Wikipedia states that for a tetration of x to infinity (i.e. x^x^x^x^x...), the solution y satisfies y = x^y. In your case, for example, 0.483908 = e^(-3/2)^0.483908, so 0.483908 is a solution. Not sure how you would exploit this though.
Wikipedia also gives a convergence condition, which might be of use to you: x lies between e^-e and e^1/e.
Final Edit (?)
Turns out you need Lambert's W function to solve for equations of the form of y = x^y. There seems to be no native function for this, but there seems to be something in the FileExchange - see here and here.

Replace certain elements of matrix with NaN (MATLAB)

I have a vector, A.
A=[3,4,5,2,2,4;2,3,4,5,3,4;2,4,3,2,3,1;1,2,3,2,3,4]
Some of the records in A must be replaced by NaN values, as they are inaccurate.
I have created vector rowid, which records the last value that must be kept after which the existing values must be swapped to NaN.
rowid=[4,5,4,3]
So the vector I wish to create, B, would look as follows:
B=[3,4,5,2,NaN,NaN;2,3,4,5,3,NaN;2,4,3,2,NaN,NaN;1,2,3,NaN,NaN,NaN]
I am at a loss as to how to do this. I have tried to use
A(:,rowid:end)
to start selecting out the data from vector A. I am expecting to be able to use sub2ind or some sort of idx to do this, possibly an if loop, but I don't know where to start and cannot find an appropriate similar question to base my thoughts on!
I would very much appreciate any tips/pointers, many thanks
If you are not yet an expert of matlab, I would stick to simple for-loops for now:
B = A;
for i=1:length(rowid)
B(i, rowid(i)+1:end) = NaN;
end
It is always a sport to write this as a one-liner (see Mohsen's answer), but in many cases an explicit for-loop is much clearer.
A compact one is:
B = A;
B(bsxfun(#lt, rowid.', 1:size(A,2)))=NaN;

How to sort in ascending order the solution vector in each iteration using ODE?

I've got an ODE system working perfectly. But now, I want in each iteration, sort in ascending order the solution vector. I've tried many ways but I could not do it. Does anyone know how to do?
Here is a simplified code:
function dtemp = tanque1(t,temp)
for i=1:N
if i==1
dtemp(i)=(((-k(i)*At*(temp(i)-temp(i+1)))/(y))-(U*As(i)*(temp(i)-Tamb)))/(ro(i)*vol_nodo*cp(i));
end
if i>1 && i<N
dtemp(i)=(((k(i)*At*(temp(i-1)-temp(i)))/(y))-((k(i)*At*(temp(i)-temp(i+1)))/(y))-(U*As(i)*(temp(i)-Tamb)))/(ro(i)*vol_nodo*cp(i));
end
if i==N
dtemp(i)=(((k(i)*At*(temp(i-1)-temp(i)))/(y))-(U*As(i)*(temp(i)-Tamb)))/(ro(i)*vol_nodo*cp(i));
end
end
end
Test Script:
inicial=343.15*ones(200,1);
[t temp]=ode45(#tanque1,0:360:18000,inicial);
It looks like you have three different sets of differential equations depending on the index i of the solution vector. I don't think you mean "sort," but rather a more efficient way to implement what you've already done - basically vectorization. Provided I haven't accidentally made any typos (you should check), the following should do what you need:
function dtemp = tanque1(t,temp)
dtemp(1) = (-k(1)*At*(temp(1)-temp(2))/y-U*As(1)*(temp(1)-Tamb))/(ro(1)*vol_nodo*cp(1));
dtemp(2:N-1) = (k(2:N-1).*(diff(temp(1:N-1))-diff(temp(2:N)))*At/y-U*As(2:N-1).*(temp(2:N-1)-Tamb))./(vol_nodo*ro(2:N-1).*cp(2:N-1));
dtemp(N) = (k(N)*At*(temp(N-1)-temp(N))/y-U*As(N)*(temp(N)-Tamb))/(ro(N)*vol_nodo*cp(N));
You'll still need to define N and the other parameters and ensure that temp is returned as a column vector. You could also try replacing N with the end keyword, which might be faster. The two uses of diff make the code shorter, but, depending on the value of N, they may also speed up the calculation. They could be replaced with temp(1:N-2)-temp(2:N-1) and temp(2:N-1)-temp(3:N). It may be possible to collapse these down to a single vectorized equation, but I'll leave that as an exercise for you to attempt if you like.
Note that I also removed a great many unnecessary parentheses for clarity. As you learn Matlab you'll to get used to the order of operations and figure out when parentheses are needed.