How to sort in ascending order the solution vector in each iteration using ODE? - matlab

I've got an ODE system working perfectly. But now, I want in each iteration, sort in ascending order the solution vector. I've tried many ways but I could not do it. Does anyone know how to do?
Here is a simplified code:
function dtemp = tanque1(t,temp)
for i=1:N
if i==1
dtemp(i)=(((-k(i)*At*(temp(i)-temp(i+1)))/(y))-(U*As(i)*(temp(i)-Tamb)))/(ro(i)*vol_nodo*cp(i));
end
if i>1 && i<N
dtemp(i)=(((k(i)*At*(temp(i-1)-temp(i)))/(y))-((k(i)*At*(temp(i)-temp(i+1)))/(y))-(U*As(i)*(temp(i)-Tamb)))/(ro(i)*vol_nodo*cp(i));
end
if i==N
dtemp(i)=(((k(i)*At*(temp(i-1)-temp(i)))/(y))-(U*As(i)*(temp(i)-Tamb)))/(ro(i)*vol_nodo*cp(i));
end
end
end
Test Script:
inicial=343.15*ones(200,1);
[t temp]=ode45(#tanque1,0:360:18000,inicial);

It looks like you have three different sets of differential equations depending on the index i of the solution vector. I don't think you mean "sort," but rather a more efficient way to implement what you've already done - basically vectorization. Provided I haven't accidentally made any typos (you should check), the following should do what you need:
function dtemp = tanque1(t,temp)
dtemp(1) = (-k(1)*At*(temp(1)-temp(2))/y-U*As(1)*(temp(1)-Tamb))/(ro(1)*vol_nodo*cp(1));
dtemp(2:N-1) = (k(2:N-1).*(diff(temp(1:N-1))-diff(temp(2:N)))*At/y-U*As(2:N-1).*(temp(2:N-1)-Tamb))./(vol_nodo*ro(2:N-1).*cp(2:N-1));
dtemp(N) = (k(N)*At*(temp(N-1)-temp(N))/y-U*As(N)*(temp(N)-Tamb))/(ro(N)*vol_nodo*cp(N));
You'll still need to define N and the other parameters and ensure that temp is returned as a column vector. You could also try replacing N with the end keyword, which might be faster. The two uses of diff make the code shorter, but, depending on the value of N, they may also speed up the calculation. They could be replaced with temp(1:N-2)-temp(2:N-1) and temp(2:N-1)-temp(3:N). It may be possible to collapse these down to a single vectorized equation, but I'll leave that as an exercise for you to attempt if you like.
Note that I also removed a great many unnecessary parentheses for clarity. As you learn Matlab you'll to get used to the order of operations and figure out when parentheses are needed.

Related

Matlab: need some help for a seemingly simple vectorization of an operation

I would like to optimize this piece of Matlab code but so far I have failed. I have tried different combinations of repmat and sums and cumsums, but all my attempts seem to not give the correct result. I would appreciate some expert guidance on this tough problem.
S=1000; T=10;
X=rand(T,S),
X=sort(X,1,'ascend');
Result=zeros(S,1);
for c=1:T-1
for cc=c+1:T
d=(X(cc,:)-X(c,:))-(cc-c)/T;
Result=Result+abs(d');
end
end
Basically I create 1000 vectors of 10 random numbers, and for each vector I calculate for each pair of values (say the mth and the nth) the difference between them, minus the difference (n-m). I sum over of possible pairs and I return the result for every vector.
I hope this explanation is clear,
Thanks a lot in advance.
It is at least easy to vectorize your inner loop:
Result=zeros(S,1);
for c=1:T-1
d=(X(c+1:T,:)-X(c,:))-((c+1:T)'-c)./T;
Result=Result+sum(abs(d),1)';
end
Here, I'm using the new automatic singleton expansion. If you have an older version of MATLAB you'll need to use bsxfun for two of the subtraction operations. For example, X(c+1:T,:)-X(c,:) is the same as bsxfun(#minus,X(c+1:T,:),X(c,:)).
What is happening in the bit of code is that instead of looping cc=c+1:T, we take all of those indices at once. So I simply replaced cc for c+1:T. d is then a matrix with multiple rows (9 in the first iteration, and one fewer in each subsequent iteration).
Surprisingly, this is slower than the double loop, and similar in speed to Jodag's answer.
Next, we can try to improve indexing. Note that the code above extracts data row-wise from the matrix. MATLAB stores data column-wise. So it's more efficient to extract a column than a row from a matrix. Let's transpose X:
X=X';
Result=zeros(S,1);
for c=1:T-1
d=(X(:,c+1:T)-X(:,c))-((c+1:T)-c)./T;
Result=Result+sum(abs(d),2);
end
This is more than twice as fast as the code that indexes row-wise.
But of course the same trick can be applied to the code in the question, speeding it up by about 50%:
X=X';
Result=zeros(S,1);
for c=1:T-1
for cc=c+1:T
d=(X(:,cc)-X(:,c))-(cc-c)/T;
Result=Result+abs(d);
end
end
My takeaway message from this exercise is that MATLAB's JIT compiler has improved things a lot. Back in the day any sort of loop would halt code to a grind. Today it's not necessarily the worst approach, especially if all you do is use built-in functions.
The nchoosek(v,k) function generates all combinations of the elements in v taken k at a time. We can use this to generate all possible pairs of indicies then use this to vectorize the loops. It appears that in this case the vectorization doesn't actually improve performance (at least on my machine with 2017a). Maybe someone will come up with a more efficient approach.
idx = nchoosek(1:T,2);
d = bsxfun(#minus,(X(idx(:,2),:) - X(idx(:,1),:)), (idx(:,2)-idx(:,1))/T);
Result = sum(abs(d),1)';
Update: here are the results for the running times for the different proposals (10^5 trials):
So it looks like the transformation of the matrix is the most efficient intervention, and my original double-loop implementation is, amazingly, the best compared to the vectorized versions. However, in my hands (2017a) the improvement is only 16.6% compared to the original using the mean (18.2% using the median).
Maybe there is still room for improvement?

Clean methodology for running a function for a large set of input parameters (in Matlab)

I have a differential equation that's a function of around 30 constants. The differential equation is a system of (N^2+1) equations (where N is typically 4). Solving this system produces N^2+1 functions.
Often I want to see how the solution of the differential equation functionally depends on constants. For example, I might want to plot the maximum value of one of the output functions and see how that maximum changes for each solution of the differential equation as I linearly increase one of the input constants.
Is there a particularly clean method of doing this?
Right now I turn my differential-equation-solving script into a large function that returns an array of output functions. (Some of the inputs are vectors & matrices). For example:
for i = 1:N
[OutputArray1(i, :), OutputArray2(i, :), OutputArray3(i, :), OutputArray4(i, :), OutputArray5(i, :)] = DE_Simulation(Parameter1Array(i));
end
Here I loop through the function. The function solves a differential equation, and then returns the set of solution functions for that input parameter, and then each is appended as a row to a matrix.
There are a few issues I have with my method:
If I want to see the solution to the differential equation for a different parameter, I have to redefine the function so that it is an input of one of the thirty other parameters. For the sake of code readability, I cannot see myself explicitly writing all of the input parameters as individual inputs. (Although I've read that structures might be helpful here, but I'm not sure how that would be implemented.)
I typically get lost in parameter space and often have to update the same parameter across multiple scripts. I have a script that runs the differential-equation-solving function, and I have a second script that plots the set of simulated data. (And I will save the local variables to a file so that I can load them explicitly for plotting, but I often get lost figuring out which file is associated with what set of parameters). The remaining parameters that are not in the input of the function are inside the function itself. I've tried making the parameters global, but doing so drastically slows down the speed of my code. Additionally, some of the inputs are arrays I would like to plot and see before running the solver. (Some of the inputs are time-dependent boundary conditions, and I often want to see what they look like first.)
I'm trying to figure out a good method for me to keep track of everything. I'm trying to come up with a smart method of saving generated figures with a file tag that displays all the parameters associated with that figure. I can save such a file as a notepad file with a generic tagging-number that's listed in the title of the figure, but I feel like this is an awkward system. It's particularly awkward because it's not easy to see what's different about a long list of 30+ parameters.
Overall, I feel as though what I'm doing is fairly simple, yet I feel as though I don't have a good coding methodology and consequently end up wasting a lot of time saving almost-identical functions and scripts to solve fairly simple tasks.
It seems like what you really want here is something that deals with N-D arrays instead of splitting up the outputs.
If all of the OutputArray_ variables have the same number of rows, then the line
for i = 1:N
[OutputArray1(i, :), OutputArray2(i, :), OutputArray3(i, :), OutputArray4(i, :), OutputArray5(i, :)] = DE_Simulation(Parameter1Array(i));
end
seems to suggest that what you really want your function to return is an M x K array (where in this case, K = 5), and you want to pack that output into an M x K x N array. That is, it seems like you'd want to refactor your DE_Simulation to give you something like
for i = 1:N
OutputArray(:,:,i) = DE_Simulation(Parameter1Array(i));
end
If they aren't the same size, then a struct or a table is probably the best way to go, as you could assign to one element of the struct array per loop iteration or one row of the table per loop iteration (the table approach would assume that the size of the variables doesn't change from iteration to iteration).
If, for some reason, you really need to have these as separate outputs (and perhaps later as separate inputs), then what you probably want is a cell array. In that case you'd be able to deal with the variable number of inputs doing something like
for i = 1:N
[OutputArray{i, 1:K}] = DE_Simulation(Parameter1Array(i));
end
I hesitate to even write that, though, because this almost certainly seems like the wrong data structure for what you're trying to do.

vectorizing "for" loop with bidirectionally related variables

Last week I asked the following:
https://stackoverflow.com/questions/32658199/vectorizing-gibbs-sampler-in-matlab
Perhaps it was not that clear what I want to do, so this might be more clear.
I would like to vectorize a "for" loop in matlab, where some variables inside of the loop are bidirectionally related. So, here is an example:
A=2;
B=3;
for i=1:10000
A=3*B;
B=exp(A*(-1/2))
end
Thank you once again for your time.
A quick Excel calculation indicates that this quickly converges to 0.483908 (after much less than 10000 loops - so one way of speeding it up would be to check for convergence). If A and B are always 2 and 3 respectively, you could just replace the loop with this value.
Alternatively, using some series analysis you might be able to come up with an analytical expression for B when i is large - although with the nested exponents deriving this is a bit beyond my own abilities!
Edit
A bit of googling reveals this. Wikipedia states that for a tetration of x to infinity (i.e. x^x^x^x^x...), the solution y satisfies y = x^y. In your case, for example, 0.483908 = e^(-3/2)^0.483908, so 0.483908 is a solution. Not sure how you would exploit this though.
Wikipedia also gives a convergence condition, which might be of use to you: x lies between e^-e and e^1/e.
Final Edit (?)
Turns out you need Lambert's W function to solve for equations of the form of y = x^y. There seems to be no native function for this, but there seems to be something in the FileExchange - see here and here.

Matlab - Eliminating for loops

So, I am aware that there are a number of other posts about eliminating for loops but I still haven't been able to figure this out.
I am looking to rewrite my code so that it has fewer for loops and runs a little faster. The code describes an optics problem calculating the intensity of different colors after the light has propagated through a medium. I have already gotten credit for this assignment but I would like to learn of better ways than just throwing in for loops all over the place. I tried rewriting the innermost loop using recursion which worked and looked nice but was a little slower.
Any other comments/improvements are also welcome.
Thanks!
n_o=1.50;
n_eo=1.60;
d=20e-6;
N_skiv=100;
lambda=[650e-9 510e-9 475e-9];
E_in=[1;1]./sqrt(2);
alfa=pi/2/N_skiv;
delta=d/N_skiv;
points=100;
int=linspace(0,pi/2,points);
I_ut=zeros(3,points);
n_eo_theta=#(theta)n_eo*n_o/sqrt(n_o^2*cos(theta)^2+n_eo^2*sin(theta)^2);
hold on
for i=1:3
for j=1:points
J_last=J_pol2(0);
theta=int(j);
for n=0:N_skiv
alfa_n=alfa*n;
J_last=J_ret_uppg2(alfa_n, delta , n_eo_theta(theta) , n_o , lambda(i) ) * J_last;
end
E_ut=J_pol2(pi/2)*J_last*E_in;
I_ut(i,j)=norm(E_ut)^2;
end
end
theta_grad=linspace(0,90,points);
plot(theta_grad,I_ut(1,:),'r')
plot(theta_grad,I_ut(2,:),'g')
plot(theta_grad,I_ut(3,:),'b')
And the functions:
function matris=J_proj(alfa)
matris(1,1)=cos(alfa);
matris(1,2)=sin(alfa);
matris(2,1)=-sin(alfa);
matris(2,2)=cos(alfa);
end
function matris=J_pol2(alfa)
J_p0=[1 0;0 0];
matris=J_proj(-alfa)*J_p0*J_proj(alfa);
end
function matris=J_ret_uppg2(alfa_n,delta,n_eo_theta,n_o,lambda)
k0=2*pi/lambda;
J_r0_u2(1,1)=exp(1i*k0*delta*n_eo_theta);
J_r0_u2(2,2)=exp(1i*k0*n_o*delta);
matris=J_proj(-alfa_n)*J_r0_u2*J_proj(alfa_n);
end
Typically you cannot get rid of a for-loop if you are doing a calculation that depends on a previous answer, which seems to be the case with the J_last-variable.
However I saw at least one possible improvement with the n_eo_theta inline-function, instead of doing that calculation 100 times, you could instead simply change this line:
n_eo_theta=#(theta)n_eo*n_o/sqrt(n_o^2*cos(theta)^2+n_eo^2*sin(theta)^2);
into:
theta_0 = 1:100;
n_eo_theta=n_eo*n_o./sqrt(n_o^2*cos(theta_0).^2+n_eo^2*sin(theta_0).^2);
This would run as is, although you should also want to remove the variable "theta" in the for-loop. I.e. simply change
n_eo_theta(theta)
into
n_eo_theta(j)
The way of using the "." prefix in the calculations is the furthermost tool for getting rid of for-loops (i.e. using element-wise calculations). For instance; see element-wise multiplication.
You can use matrices!!!!
For example, you have the statement:
theta=int(j)
which is inside a nested loop. You can replace it by:
theta = [int(1:points);int(1:points);int(1:points)];
or:
theta = int(repmat((1:points), 3, 1));
Then, you have
alfa_n=alfa * n;
you can replace it by:
alfa_n = alfa .* (0:N_skiv);
And have all the calculation done in a row like fashion. That means, instead looping, you will have the values of a loop in a row. Thus, you perform the calculations at the rows using the MATLAB's functionalities and not looping.

How do I calculate result for every value in a matrix in MATLAB

Keeping simple, take a matrix of ones i.e.
U_iso = ones(72,37)
and some parameters
ThDeg = 0:5:180;
dtheta = 5*pi/180;
dphi = 5*pi/180;
Th = ThDeg*pi/180;
Now the code is
omega_iso = 0;
for i = 1:72
for j=1:37
omega_iso = omega_iso + U_iso(i,j)*sin(Th(j))*dphi*dtheta;
end
end
and
D_iso = (4 * pi)/omega_iso
This code is fine. It take a matrix with dimension 72*37. The loop is an approximation of the integral which is further divided by 4pi to get ONE value of directivity of antenna.
Now this code gives one value which will be around 1.002.
My problem is I dont need 1 value. I need a 72*37 matrix as my answer where the above integral approximation is implemented on each cell of the 72 * 37 matrix. and thus the Directviity 'D' also results in a matrix of same size with each cell giving the same value.
So all we have to do is instead of getting 1 value, we need value at each cell.
Can anyone please help.
You talk about creating a result that is a function essentially of the elements of U. However, in no place is that code dependent on the elements of U. Look carefully at what you have written. While you do use the variable U_iso, never is any element of U employed anywhere in that code as you have written it.
So while you talk about defining this for a matrix U, that definition is meaningless. So far, it appears that a call to repmat at the very end would create a matrix of the desired size, and clearly that is not what you are looking for.
Perhaps you tried to make the problem simple for ease of explanation. But what you did was to over-simplify, not leaving us with something that even made any sense. Please explain your problem more clearly and show code that is consistent with your explanation, for a better answer than I can provide so far.
(Note: One option MIGHT be to use arrayfun. Or the answer to this question might be more trivial, using simple vectorized operations. I cannot know at this point.)
EDIT:
Your question is still unanswerable. This loop creates a single scalar result, essentially summing over the entire array. You don't say what you mean for the integral to be computed for each element of U_iso, since you are already summing over the entire array. Please learn to be accurate in your questions, otherwise we are just guessing as to what you mean.
My best guess at the moment is that you might wish to compute a cumulative integral, in two dimensions. cumtrapz can help you there, IF that is your goal. But I'm not sure it is your goal, since your explanation is so incomplete.
You say that you wish to get the same value in each cell of the result. If that is what you wish, then a call to repmat at the end will do what you wish.