Using an old OS category and a new OS informal protocol in the same code base - iphone

NSStreamDelegate was defined in previous OS as (NSObject)NSStreamDelegate
In the latest OS it is defined as id
Both have the same function.
If I want to write code that is Runtime system aware. How do I create an object that is both and neither? I dream of that truly universal app.
if (catchOS10.5_or_iOS3.2) {
[MyStream setDelegate:myObj]
} else {
[MyStream setDelegate:myObjWithProtocol]
}
I have myHandlerClass which in the NEW os is
MyClass:NSObject
Thus my quandary.
Any suggestions?
-A

Do you actually have trouble getting this to work on both versions? The two ideas are basically the same.
You will definitely have to declare your delegate class as implementing the NSStreamDelegate protocol (which is a formal protocol, not an informal one, in the current SDK):
#interface MyHandlerClass : NSObject <NSStreamDelegate> {
// ...
}
-(void)stream:(NSStream*)theStream handleEvent:(NSStreamEvent)streamEvent;
#end
Since the "id" type is really just a typedef for a pointer to an Obj-C object, your pointer to your delegate class will both be an id as well as an NSObject:
NSStream *myStream = [[NSStream alloc] init];
MyHandlerClass *del = [[MyHandlerClass alloc] init];
myStream.delegate = del;
... should work on both SDKs. Or, if you're creating your stream inside of your delegate class (a common idiom) you'd do:
NSStream *myStream = [[NSStream alloc] init];
myStream.delegate = self;
to the same happy end.

Related

Making Xcode complain about a missing parameter

I am designing a new application by modernizing code I wrote in the past. This old code uses the class/delegate model and I am trying to transform them to use blocks as callbacks, not the delegate stuff.
What I do is to create a property like
#property (nonatomic, copy) void (^onTouch)(NSInteger index);
That would pass to the object using that class a block where code can be inserted and in this case executed on touch.
But my problem is this. When you use delegates and you have a method on the delegate protocol, Xcode will warn if you use that class and forget to implement the delegate protocols. Is that a way to do that with blocks? Or in other words: is there a way to make Xcode complain if a callback block is not defined by the caller?
I mean this would be the correct:
MyClass *obj = [[MyClass alloc] init];
obj.onTouch = ^(NSInteger *index){ //call back code to be executed };
This would be OK too
MyClass *obj = [[MyClass alloc] init];
obj.onTouch = nil;
but this would generate a message
MyClass *obj = [[MyClass alloc] init];
// no callback block defined.
Is this possible?
If you want to enforce setting a certain parameter, I would include it in the initializer.
MyClass *obj = [[MyClass alloc] initWithBlock:^(NSInteger *index) { /* code*/ }];
Then, in MyClass:
- (id)init {
// This will result in a runtime error if you use the wrong initializer.
NSAssert(NO, #"Use initWithBlock instead.");
}
- (id)initWithBlock(initWithBlock:^(NSInteger *)block) {
self = [super init];
if (self) {
self.onTouch = block;
}
return self;
}
Also note, attempting to execute a NULL block results in a crash, so make sure to do:
if (self.onTouch) { self.onTouch(); }
Wherever you run the block.
First, I strongly recommend defining types to represent your blocks - makes them a lot easier to work with, especially if you need to refactor the parameters.
You can't write code that distinguishes between "I set this property to nil" or "the runtime initialized this property to nil", at least not without some crazy runtime code to check the stack. Only option I can think of would be to use the null object pattern. Before I elaborate, bear in mind that I haven't actually tried to test this, but it should work. Define a block that means 'has no value' and set your property to point to that block on init. Then you can compare to that NullBlock at runtime to identify if someone explicitly set the property to nil (because it would be nil at that point) or gave it a real non-nil value.
Alternatively, if you don't mind manually writing your set accessors, you could have a BOOL that tracks if someone set the property explicitly. Then when you call the block just check if someone actually set the value or not.
#synthesize onTouchBlock=_onTouchBlock;
MyBlock _onTouchBlock;
BOOL _onTouchBlockWasSet;
- (void)setOnTouchBlock:(MyBlock)block {
_onTouchBlockWasSet = YES;
_onTouchBlock = block;
}
I would not recommend passing the value in the initializer because that makes it tied to the creation of that object type. If you wanted to change the block in code based on some condition, you'd be back to square one. Also, it prevents you from using storyboards which create that object.

Iphone: Replace functions using reflection

I have a small function which I want to rewrite, so that function is valid for every class.
At the moment I have 10 of the same functions which all work same but every function is for another class.
I know, that I have to do it with reflections, but I am not so sure how to do it.
I already read this link:
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/ObjCRuntimeRef/Reference/reference.html
The functions I am talking about are:
-(NSCountedSet *)MissionGetReferecedNested:(id)modelObject
{
setOfObjects = [[NSCountedSet alloc]initWithArray:modelObject.MissionSectionList];
return setOfObjects;
}
-(NSCountedSet *)MissionGetSectionReferecedNested:(id)modelObject
{
setOfObjects = [[NSCountedSet alloc]initWithArray:modelObject.DamageAccountList];
return setOfObjects;
}
MissionSectionList and DamageAccountList are both NSMutableArrays from two different classes.
Is it possible to see if a class consists a NSMutableArray and if yes then it should call the .... modelObject.MyMutableArray?
You can use reflection like this:
- (NSCountedSet *)MissionGet:(id)modelObject
{
SEL propertySelector = NULL;
if ([modelObject respondsToSelector:#selector(MissionSectionList)]) {
propertySelector = #selector(MissionSectionList);
} else if ([modelObject respondsToSelector:#selector(DamageAccountList)]) {
propertySelector = #selector(DamageAccountList);
}
if (!propertySelector) {
[NSException raise:#"Invalid modelObject value" format:#"Model object %# does not contain any recognised selectors", modelObject];
}
return [[NSCountedSet alloc] initWithArray:[modelObject performSelector:propertySelector]];
}
But a more common technique among cocoa programmers would be:
- (NSCountedSet *)MissionGet:(id <MyCustomProtocol>)modelObject
{
return [[NSCountedSet alloc] initWithArray:[modelObject missionArray]];
}
Where you would accept any object which confirms to the protocol MyCustomProtocol. The protocol is defined in a header files somewhere, using:
#protocol MyCustomProtocol
#property (readonly) NSArray *missionArray;
#end
And then in each of your classes, declare it as implementing the protocol:
#interface MissionSectionListClass <MyCustomProtocol>
And add a method implementation:
#implementation MissionSectionListClass <MyCustomProtocol>
- (NSArray *)missionArray
{
return self.MissionSectionList;
}
#end
Using protocols is a bit more code, but it's the "right" way to go. It allows you to add support for new classes, without any change to your MissiongGet... method.
More info about protocols: http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProtocols.html
EDIT : Cleared all my answer to this :
I think it's not possible to check if a class has a member variable of specified type. You can only check if a class has a specified method.
So, in this case it will be best if you make all your NSMutableArray list the same name, and then create a declared property for this list, and then do a respondsToSelector in your ...GetReferencedNested method.
So, for example, in all of your class create this property :
#property (nonatomic, retain) NSMutableArray * list;
and then in the ..MissionGetReferencedNested method :
if ([modelObject respondsToSelector:#selector(list)])
...
Correct me if i'm wrong...
In terms of style I'd also follow Abhi's suggestion.
But if you really want to inspect a class that you are stuck with and, for example build a NSCountedSet with the first NSMutableArray variable you can find, you could do it like this:
#import "Utilities.h"
#import <Foundation/Foundation.h>
#import <objc/objc-runtime.h>
#implementation Utilities
+ (NSCountedSet*)initCountedSetWithFirstArrayinObject:(id)someObject {
unsigned int c;
Ivar *ivar_arr = class_copyIvarList([someObject class], &c);
for (unsigned int i = 0; i < c; i++) {
if ([#"#\"NSMutableArray\"" isEqualToString:
[NSString stringWithCString:ivar_getTypeEncoding(ivar_arr[i]) encoding:NSUTF8StringEncoding]
]) {
return [[NSCountedSet alloc] initWithArray:object_getIvar(someObject, ivar_arr[i])];
}
}
return nil;
}
#end
Of course this has very limited real world use because it depends on you knowing that the first array will be the one you're interested in.
I think I have to go with the runtime type editing.(http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/ObjCRuntimeRef/Reference/reference.html)
The idea with the protocols was good but there I have to change a lot of things in the classes.(which is not possible/allowed) for me. My intension was only to change the functions so that I have only one function for all classes.
I think with the runtime type editing I can check what classes and attributes I have (?) Am I right?
Did somebody already work with runtime type editing?

Handling memory leaks in factory methods

I am developing an objective C framework which will ship as a static library at the end. But when I integrate that library to an actual application (by adding the static library) in the leaks tools I see some memory leaks present.
Here is an example scenario.
#implementation Test
#synthesize testNumber
+(Test) createTestInstance {
Test *test = [[Test alloc] init];
test.testNumber = [[NSDecimerNumber alloc] initWithInt:1];
return test;
}
-(void) dealloc {
[testNumber release];
}
#end
Although I release testNumber variable in dealloc I see a memory leak in Leaks tool at alloc position. What can be the issue here?
Also as this is a library provided for user to invoke, is it a best practice to release those variable from the library code?
Thank You
I see two problems here. If testNumber is a retain property, you are overretaining it with this statement:
test.testNumber = [[NSDecimerNumber alloc] initWithInt:1];
Both alloc-init and the property accessor are retaining the object. Therefore, it should be:
test.testNumber = [[[NSDecimerNumber alloc] initWithInt:1] autorelease];
There is no need to mention that you still need to release testNumber in the dealloc method.
Also, I understand createTestInstance is a convenience constructor to create Testobjects and it should return an autoreleased object according to the Object Ownership Policy (only methods with names that start with “alloc”, “new”, “copy”, or “mutableCopy” return an object you own):
+ (id)createTestInstance {
Test *test = [[[self alloc] init] autorelease];
test.testNumber = [[[NSDecimerNumber alloc] initWithInt:1] autorelease];
return test;
}
Finally, as suggested by #Josh Caswell, convenience constructors should return id instead of the specific class. From The Objective-C Programming Language:
The return type of convenience
constructors is id for the same reason
it is id for initializer methods, as
discussed in “Constraints and Conventions.”
Also, they should use self instead of the hard-coded class name to alloc-init the instance in order to handle subclassing properly (self here refers to the class object itself since this is a class method).

Problem with singleton

I want to make a singleton containing information "title, comments, Two picture" and it saves all the information in an array
I want to do is these objects in my application I use it All The Time
#interface CarteManager : NSObject {
NSMutableArray *carteMan ;
}
#property(nonatomic,retain) NSMutableArray *carteMan;
+(CarteManager*)sharedInstance;
-(void)ajouttitre:(NSString*)txt;
-(void)ajoutcom:(NSString*)com;
-(void)ajoutimage1:(UIImage*)img;
-(void)ajoutimage2:(UIImage*)img;
#end
In order to create a Singleton you will need a static instance.
#implementation CarteManager
static CarteManager *_carteManager = nil;
+(CarteManager*)sharedInstance {
if (!_carteManager) {
_carteManager = [[CarteManager alloc] init];
}
return _carteManager;
}
// your other codes
#end
And before creating a Singleton, make sure that you really need a Singleton. Please pay special attention to Singleton: How should it be used.
You didn't state your problem. If it's how to make the object a singleton, you can find several possible implementations in the question What does your Objective-C singleton look like?.

Initialize a class only once

I have a class that contains a few instance methods which need to be called from another class. I know how to do that -
TimeFormatter *myTimeFormatter = [[TimeFormatter alloc] init];
[myTimeFormatter formatTime:time];
However, I don't want to have to alloc and init TimeFormatter every time I need to call one of its methods. (I need to call TimeFormatter's methods from various methods in another class).
I tried putting
TimeFormatter *myTimeFormatter = [[TimeFormatter alloc] init];
"by itself", or not in any blocks, but when I compile, I get an "initializer element is not constant" error.
Any input is greatly appreciated!
You can use the singleton pattern. You can read more about it here.
Specifically, you'd do something like:
static TimeFormatter* gSharedTimeFormatter = nil;
#implementation TimeFormatter
+ (TimeFormatter*)sharedTimeFormatter {
if (!gSharedTimeFormatter) {
#synchronized(self) {
if (!gSharedTimeFormatter) {
gSharedTimeFormatter = [[TimeFormatter alloc] init];
}
}
}
return gSharedTimeFormatter;
}
...
#end
Notice that we check if the variable is null, and if it is, we take a lock, and check again. This way, we incur the locking cost only on the allocation path, which happens only once in the program. This pattern is known as double-checked locking.
However, I don't want to have to alloc and init TimeFormatter every time I need to call one of its methods. (I need to call TimeFormatter's methods from various methods in another class).
I think it's worth clarifying some OOP terminology here.
The reason you need to alloc and init TimeFormatter is because your methods are instance methods. Because they're instance methods, you need an instance, and that's what alloc and init provide. Then you call your methods on (send messages to) the instance ([myTimeFormatter formatTimeString:…]).
The advantage of allowing instances is that you can keep state and settings in each instance, in instance variables, and make the latter into publicly-visible properties. Then you can deliberately have multiple instances, each having its own settings configured by whatever's using that instance.
If you don't need that functionality, you don't need to make these instance methods. You can make them class methods or even C functions, and then you don't need a TimeFormatter instance. With class methods, you send messages directly to the class ([TimeFormatter formatTimeString:…]).
And if you do want settings shared among all instances (and you don't have any state to keep), then you're right that you can just have one instance—a singleton.
The reason for that parenthesis is that shared state is bad, especially if two threads may use the time formatter concurrently. (For that matter, you could say that about settings, too. What if one thread wants seconds and the other doesn't? What if one wants 24-hour and the other wants 12-hour?) Better to have each thread use its own time formatter, so that they don't get tripped up by each other's state.
(BTW, if TimeFormatter is the actual name of your class: You are aware of NSDateFormatter, right? It does let you only format/parse the time.)
Here's a detail example of a sharedMethod. Credit goes here
#implementation SearchData
#synthesize searchDict;
#synthesize searchArray;
- (id)init {
if (self = [super init]) {
NSString *path = [[NSBundle mainBundle] bundlePath];
NSString *finalPath = [path stringByAppendingPathComponent:#"searches.plist"];
searchDict = [[NSDictionary alloc] initWithContentsOfFile:finalPath];
searchArray = [[searchDict allKeys] retain];
}
return self;
}
- (void)dealloc {
[searchDict release];
[searchArray release];
[super dealloc];
}
static SearchData *sharedSingleton = NULL;
+ (SearchData *)sharedSearchData {
#synchronized(self) {
if (sharedSingleton == NULL)
sharedSingleton = [[self alloc] init];
}
return(sharedSingleton);
}
#end
A very nice, and easy, way to setup a Singleton is to use Matt Gallager's SYNTHESIZE_SINGLETON_FOR_CLASS.
It sounds like you want to make TimeFormatter a singleton, where only one instance can be created. Objective-C doesn't make this super easy, but basically you can expose a static method that returns a pointer to TimeFormatter. This pointer will be allocated and initialized the first time in, and every time after that same pointer can be used. This question has some examples of creating a singleton in Objective-C.
You are trying to declare your variable outside the class? If to do it the way you want to do it you gotta declare it as static so
static TimeFormatter *myFormatter=...
From the name of the class though i dont see why you would wnat to keep one instance of your class... you can also do this with a singleton as described above, that is if you want to keep one instance of your class for the app as a whole.