Handling memory leaks in factory methods - iphone

I am developing an objective C framework which will ship as a static library at the end. But when I integrate that library to an actual application (by adding the static library) in the leaks tools I see some memory leaks present.
Here is an example scenario.
#implementation Test
#synthesize testNumber
+(Test) createTestInstance {
Test *test = [[Test alloc] init];
test.testNumber = [[NSDecimerNumber alloc] initWithInt:1];
return test;
}
-(void) dealloc {
[testNumber release];
}
#end
Although I release testNumber variable in dealloc I see a memory leak in Leaks tool at alloc position. What can be the issue here?
Also as this is a library provided for user to invoke, is it a best practice to release those variable from the library code?
Thank You

I see two problems here. If testNumber is a retain property, you are overretaining it with this statement:
test.testNumber = [[NSDecimerNumber alloc] initWithInt:1];
Both alloc-init and the property accessor are retaining the object. Therefore, it should be:
test.testNumber = [[[NSDecimerNumber alloc] initWithInt:1] autorelease];
There is no need to mention that you still need to release testNumber in the dealloc method.
Also, I understand createTestInstance is a convenience constructor to create Testobjects and it should return an autoreleased object according to the Object Ownership Policy (only methods with names that start with “alloc”, “new”, “copy”, or “mutableCopy” return an object you own):
+ (id)createTestInstance {
Test *test = [[[self alloc] init] autorelease];
test.testNumber = [[[NSDecimerNumber alloc] initWithInt:1] autorelease];
return test;
}
Finally, as suggested by #Josh Caswell, convenience constructors should return id instead of the specific class. From The Objective-C Programming Language:
The return type of convenience
constructors is id for the same reason
it is id for initializer methods, as
discussed in “Constraints and Conventions.”
Also, they should use self instead of the hard-coded class name to alloc-init the instance in order to handle subclassing properly (self here refers to the class object itself since this is a class method).

Related

#property/#synthesize question

I'm going through all of my documentation regarding memory management and I'm a bit confused about something.
When you use #property, it creates getters/setters for the object:
.h:
#property (retain, nonatomic) NSString *myString
.m:
#synthesize myString
I understand that, but where I get confused is the use of self. I see different syntax in different blogs and books. I've seen:
myString = [NSString alloc] initWithString:#"Hi there"];
or
self.myString = [NSString alloc] initWithString:#"Hi there"];
Then in dealloc I see:
self.myString = nil;
or
[myString release];
or
self.myString = nil;
[myString release];
On this site, someone stated that using self adds another increment to the retain count? Is that true, I haven't seen that anywhere.
Do the automatic getters/setters that are provided autorelease?
Which is the correct way of doing all of this?
Thanks!
If you are not using the dot syntax you are not using any setter or getter.
The next thing is, it depends on how the property has been declared.
Let's assume something like this:
#property (nonatomic, retain) Article *article;
...
#synthesize article;
Assigning something to article with
self.article = [[Article alloc] init];
will overretain the instance given back by alloc/init and cause a leak. This is because the setter of article will retain it and will release any previous instance for you.
So you could rewrite it as:
self.article = [[[Article alloc] init] autorelease];
Doing this
article = [[Article alloc] init];
is also ok, but could involve a leak as article may hold a reference to an instance already. So freeing the value beforehand would be needed:
[article release];
article = [[Article alloc] init];
Freeing memory could be done with
[article release];
or with
self.article = nil;
The first one does access the field directly, no setters/getters involved. The second one sets nil to the field by using a setter. Which will release the current instance, if there is one before setting it to nil.
This construct
self.myString = nil;
[myString release];
is just too much, it actually sends release to nil, which is harmless but also needless.
You just have to mentally map hat using the dot syntax is using accessor methods:
self.article = newArticle
// is
[self setArticle:newArticle];
and
myArticle = self.article;
// is
myArticle = [self article];
Some suggestions on reading, all official documents by Apple:
The Objective-C Programming Language
Dot Syntax
Declared Properties
Memory Management Programming Guide
Object Ownership and Disposal
Using Accessor Methods
When you create a retain setter, you're creating something like this:
- (void)setString:(NSString *)someString {
if (someString != string) {
[string release];
[someString retain];
string = someString;
}
}
If you don't use the setter, the new value is not getting that retain—you don't "own" that string, and because it's all references, if the original string is released, you might be facing a null reference, which will lead to an EXC_BAD_ACCESS. Using the setter ensures that your class now has a copy of that value—so yes, it does increment the retain count of the new value. (Note that using the getter is a convention of OOP—that outsiders should not be able to directly touch the ivar. Also in your getter you can modify the value, maybe returning an NSArray when your ivar is an NSMutableArray, for example).
You shouldn't autorelease in a setter—Apple has used it in their sample code, but a thing to keep in mind is that setters are called a lot—millions of times, potentially. All of those objects are going into the same autorelease pool, so unless you create your own and/or regularly flush it, you'll have a ton of elements in your pool, all unneeded but still taking up RAM. Much better to simply release.
As for dealloc, trace back through that setter. If you send a release directly, it's obvious—you release that object. But if you write self.string = nil;, what you're doing is this:
The nil value is not the same, so you enter the if block
You release the old value—what you want to do
You retain nil: messages to nil do nothing, and you don't crash
You set nil, which doesn't take up any memory, to the string, which is now effectively empty
As a matter of convention, I use release in my dealloc method, because release seems more final, and dealloc is the final method call your object will receive. I use self.string = nil; in viewDidUnload and the memory warning methods.
Hope this helps!
In addition to Nick's answer - synthesized getters/setters don't provide autorelease (btw, what's the big idea of doing this? Well, you can use getter as a factory, but it's not a common way in Objective C).
Then in dealloc I see:
self.myString = nil;
or
[myString release];
or
self.myString = nil; [myString
release];
In dealloc it doesn't really matter which form of release you're using. But the good way is to nil your fields when releasing them :) I prefer to use self.myString = nil; in dealloc

Objective-C method to nullify object

i have some trouble writing a method in Objective-C to make an object nil. Here is some example :
#interface testA : NSObject
{
NSString *a;
}
#property (nonatomic, retain) NSString *a;
+(testA*)initWithA:(NSString *)aString;
-(void)displayA;
-(void)nillify;
#end
#implementation testA
#synthesize a;
+(testA*)initWithA:(NSString *)aString{
testA *tst=[[testA alloc] init];
tst.a=aString;
return [tst autorelease];
}
-(void)displayA{
NSLog(#"%#",self.a);
}
-(void)nillify{
self=nil;
}
- (void)dealloc {
[a release];
[super dealloc];
}
#end
int main(int argc, char **argv){
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
testA *test=[testA initWithA:#"some test"];
[test displayA];
test=nil;
//[test nillify];
NSLog(#"after setting to nil");
[test displayA];
[pool release];
return 0;
}
Apparently , when I set test object to nil and then call some method on it nothing happens , but if i call nillify instead of directly setting it to nil , displayA method works normally like test object is still there. Is there a workaround for nillify method to function properly ?
Your help is much appreciated !
You can't actually do something like this, because setting 'self' to nil only has any effect within the scope of that method (in your case, 'nilify'). You don't have any actual way to effect the values of pointers located on other parts of the stack or in random places in the heap, for example.
Basically any code that holds a reference to some object is responsible for maintaining and clearing those references itself. If you have some use case where random sections of code may need references to "live" objects of some kind, but where you'd want those object references to go away in response to some external event (maybe a user tracking system or something), you could do something with notifications, but the various modules tracking those "live" objects would still be responsible for listening for notifications and cleaning up references when they received them.
The 'nilify' thing, however, can't possibly work.
You cannot do what you're trying to do. self is just a local reference to an object that actually exists elsewhere. Setting it to nil doesn't mean anything. An object doesn't, in general, own itself, and it certainly doesn't control other objects' references to it. It's up to the owning objects to manage its lifetime.
There are a few things wrong with your code.
First, by convention, class names start with an uppercase letter. Please stick to these naming conventions as it will make it harder for other developers to work with your code (and even confuse you).
Next, your initWithName:... According to the naming conventions, a method with init in its name should be an instance method, not a class method. So either name it newWithName: or turn it into an instance method like this:
-(testA*)initWithA:(NSString *)aString{
self = [super init];
if (!self) return nil;
tst.a=aString;
return self;
}
If you keep it as class method (and name it newWithName:) you should not return a autoreleased object since according to the naming conventions method that start with init... or new... return a retained object. If you do not follow these conventions, the static analyzer will give you "false" warnings and it will become useless for you.
Now for the reason your nillify doesn't work: the self is in fact an argument to a method. Under the hood, your nillify method actually has two arguments that you do not see: the self pointer and the selector pointer. This means, self is actually a variable on the stack. And if you overwrite it, you only overwrite that stack variable but that doesn't influence your test variable which is somewhere else.
As an example, consider a method - (void)foo:(NSString *)bar;. The compiler turns it into the equivalent of the C function (void) foo(id self, SEL _cmd, NSString *bar).

How to release an object in a forin loop?

I'm new to cocoa / objective-c and i'm struggeling with the releases of my objects. I have the following code:
gastroCategoryList = [[NSMutableArray alloc] init];
for (NSDictionary *gastrocategory in gastrocategories) {
NSString *oid = [gastrocategory objectForKey:#"id"];
GastroCategory *gc = [[GastroCategory alloc] initWithId:[oid intValue] name:[gastrocategory objectForKey:#"name"]];
[gastroCategoryList addObject:gc];
}
The analyzer shows me that the "gastrocategory" defined in the for is a potential memory leak. But i'm not sure if i can release this at the end of the for loop?
Also at the following code:
- (NSArray *)eventsForStage:(int)stageId {
NSMutableArray *result = [[NSMutableArray alloc] init];
for (Event *e in eventList) {
if ([e stageId] == stageId) {
[result addObject:e];
}
}
return result;
}
The Analyzer tells me that my "result" is a potential leak. But where should I release this?
Is there also a simple rule to memorize when i should use assign, copy, retain etc. at the #property ?
Another problem:
- (IBAction)showHungryView:(id)sender {
GastroCategoriesView *gastroCategoriesView = [[GastroCategoriesView alloc] initWithNibName:#"GastroCategoriesView" bundle:nil];
[gastroCategoriesView setDataManager:dataManager];
UIView *currentView = [self view];
UIView *window = [currentView superview];
UIView *gastroView = [gastroCategoriesView view];
[window addSubview:gastroView];
CGRect pageFrame = currentView.frame;
CGFloat pageWidth = pageFrame.size.width;
gastroView.frame = CGRectOffset(pageFrame,pageWidth,0);
[UIView beginAnimations:nil context:NULL];
currentView.frame = CGRectOffset(pageFrame,-pageWidth,0);
gastroView.frame = pageFrame;
[UIView commitAnimations];
//[gastroCategoriesView release];
}
I don't get it, the "gastroCategoriesView" is a potential leak. I tried to release it at the end or with autorelease but neither works fine. Everytime I call the method my app is terminating. Thank you very much again!
In your loop, release each gc after adding it to the list since you won't need it in your loop scope anymore:
gastroCategoryList = [[NSMutableArray alloc] init];
for (NSDictionary *gastrocategory in gastrocategories) {
NSString *oid = [gastrocategory objectForKey:#"id"];
GastroCategory *gc = [[GastroCategory alloc] initWithId:[oid intValue] name:[gastrocategory objectForKey:#"name"]];
[gastroCategoryList addObject:gc];
[gc release];
}
In your method, declare result to be autoreleased to absolve ownership of it from your method:
NSMutableArray *result = [[[NSMutableArray alloc] init] autorelease];
// An alternative to the above, produces an empty autoreleased array
NSMutableArray *result = [NSMutableArray array];
EDIT: in your third issue, you can't release your view controller because its view is being used by the window. Setting it to autorelease also causes the same fate, only delayed.
You'll have to retain your GastroCategoriesView controller somewhere, e.g. in an instance variable of your app delegate.
BoltClock's answer is spot-on as to the first part of your question. I'll try to tackle the rest.
Assign is for simple, non-object types such as int, double, or struct. It generates a setter that does a plain old assignment, as in "foo = newFoo". Copy & retain will, as their names imply, either make a copy of the new value ("foo = [newFoo copy]") or retain it ("foo = [newFoo retain]"). In both cases, the setter will release the old value as appropriate.
So the question is, when to copy and when to retain. The answer is... it depends. How does your class use the new value? Will your class break if some other code modifies the incoming object? Say, for example, you have an NSString* property imaginatively named "theString." Other code can assign an NSMutableString instance to theString - that's legal, because it's an NSString subclass. But that other code might also keep its own reference to the mutable string object, and change its value - is your code prepared to deal with that possibility? If not, it should make its own copy, which the other code can't change.
On the other hand, if your own code makes no assumptions about whether theString might have been changed, and works just as well whether or not it was, then you'd save memory by retaining the incoming object instead of unnecessarily making a copy of it.
Basically, the rule, which is unfortunately not so simple sometimes, is to think carefully about whether your own code needs its own private copy, or can correctly deal with a shared object whose value might be changed by other code.
The reason you can release gc after it is added to the gastroCategoryList is that when an object is added to an array, the array retains that object. So, even though you release your gc, it will still be around; retained by the gastroCategoryList.
When you are returning a newly created object from a method, you need to call autorelease. This will cause the object to be released only after the runtime leaves the scope of the calling method, thereby giving the calling method a chance to do something with the returned value.
Note that if your method starts with the word copy or new, then you should not autorelease your object; you should leave it for the calling method to release.
As for copy vs retain vs assign... as a general rule, copy objects that have a mutable version, such as NSArray, NSSet, NSDictionary, and NSString. This will ensure that the object you have a pointer to is not mutable when you don't want it to be.
Otherwise, use retain whenever you want your class to be ensured that an object is still in memory. This will apply to almost every object except for objects that are considered parents of your object, in which case you would use assign. (See the section on retain cycles here).
Also note that you have to use assign for non-object types such as int.
Read through the Memory Management Programming Guide a bit; it's quite helpful.

IPhone memory management

I am a bit lost with the memory management. I've read that you should release whenever you alloc. But when you get an instance without the alloc, you shouldnt release.
What about this situation, just need to know If I was coding correctly. I'm still new on iphone dev.
I have a class CustomerRepository it has a method
- (MSMutableArray *) GetAllCustomers() {
MSMutableArray *customers = [[MSMutableArray alloc] init];
Customer *cust1 = [[Customer alloc] init];
cust1.name = #"John";
Customer *cust2 = [[Customer alloc] init];
cust2.name = #"Tony";
[customers addOjbect:cust1];
[customers addOjbect:cust2];
[cust1 release];
[cust2 release];
return customers;
}
Then I have a UIViewController
- (void) LoadCustomers() {
CustomerRepository *repo = [[CustomerRepository alloc] init];
MSMutableArray *customers = [repo GetAllCustomers];
// Iterate through all customers and do something
[repo release];
}
So in this scenario ... the MSMutableArray will never be release? Where should it be release?
If you alloc an object in a function that you need to return from the function then you can't release it inside the function. The correct way to do this is to autorelease the object.
MSMutableArray *customers = [[MSMutableArray alloc] init];
// ..... do work
return [customers autorelease];
This is the approach taken by the connivence constructors like
[NSString stringWithString:#"test"];
This method will return you an autoreleased string so that you don't need to release it.
And if you don't do this then you should name your function accordingly that the caller knows that it owns the returned object and thus needed to be released. These are conventions, not a rule imposed by the compiler or run-time environment but following convention is extremely important, specially when multiple people are involved in the project.
Whenever you create and return an object from a method or function, that object should be autoreleased. The exceptions are when the method starts with Create or New (or Alloc, obviously), or when the object is being cached within the method.
The other answers which suggest releasing it in LoadCustomers are incorrect, because GetAllCustomers does not imply a transfer of ownership like CreateCustomersArray or NewCustomersArray would. However, you can't release the object in GetAllCustomers either because then the object would be deallocated before returning it. The solution is autorelease.
The customers array should be released after you are done iterating it. You delegated the creation of the array to your repo object but your LoadCustomers method owns the array.
Another approach would be to have your CustomerRepository expose an allCustomers property. You could lazily initialize the array in your getter and then release the array when the CustomerRepository is released. That would keep your calls to alloc and release in the same object.
it should be released in your view controller, LoadCustomers() since you are allocing it in the method you are calling, it is still owned by YOU.

Initialize a class only once

I have a class that contains a few instance methods which need to be called from another class. I know how to do that -
TimeFormatter *myTimeFormatter = [[TimeFormatter alloc] init];
[myTimeFormatter formatTime:time];
However, I don't want to have to alloc and init TimeFormatter every time I need to call one of its methods. (I need to call TimeFormatter's methods from various methods in another class).
I tried putting
TimeFormatter *myTimeFormatter = [[TimeFormatter alloc] init];
"by itself", or not in any blocks, but when I compile, I get an "initializer element is not constant" error.
Any input is greatly appreciated!
You can use the singleton pattern. You can read more about it here.
Specifically, you'd do something like:
static TimeFormatter* gSharedTimeFormatter = nil;
#implementation TimeFormatter
+ (TimeFormatter*)sharedTimeFormatter {
if (!gSharedTimeFormatter) {
#synchronized(self) {
if (!gSharedTimeFormatter) {
gSharedTimeFormatter = [[TimeFormatter alloc] init];
}
}
}
return gSharedTimeFormatter;
}
...
#end
Notice that we check if the variable is null, and if it is, we take a lock, and check again. This way, we incur the locking cost only on the allocation path, which happens only once in the program. This pattern is known as double-checked locking.
However, I don't want to have to alloc and init TimeFormatter every time I need to call one of its methods. (I need to call TimeFormatter's methods from various methods in another class).
I think it's worth clarifying some OOP terminology here.
The reason you need to alloc and init TimeFormatter is because your methods are instance methods. Because they're instance methods, you need an instance, and that's what alloc and init provide. Then you call your methods on (send messages to) the instance ([myTimeFormatter formatTimeString:…]).
The advantage of allowing instances is that you can keep state and settings in each instance, in instance variables, and make the latter into publicly-visible properties. Then you can deliberately have multiple instances, each having its own settings configured by whatever's using that instance.
If you don't need that functionality, you don't need to make these instance methods. You can make them class methods or even C functions, and then you don't need a TimeFormatter instance. With class methods, you send messages directly to the class ([TimeFormatter formatTimeString:…]).
And if you do want settings shared among all instances (and you don't have any state to keep), then you're right that you can just have one instance—a singleton.
The reason for that parenthesis is that shared state is bad, especially if two threads may use the time formatter concurrently. (For that matter, you could say that about settings, too. What if one thread wants seconds and the other doesn't? What if one wants 24-hour and the other wants 12-hour?) Better to have each thread use its own time formatter, so that they don't get tripped up by each other's state.
(BTW, if TimeFormatter is the actual name of your class: You are aware of NSDateFormatter, right? It does let you only format/parse the time.)
Here's a detail example of a sharedMethod. Credit goes here
#implementation SearchData
#synthesize searchDict;
#synthesize searchArray;
- (id)init {
if (self = [super init]) {
NSString *path = [[NSBundle mainBundle] bundlePath];
NSString *finalPath = [path stringByAppendingPathComponent:#"searches.plist"];
searchDict = [[NSDictionary alloc] initWithContentsOfFile:finalPath];
searchArray = [[searchDict allKeys] retain];
}
return self;
}
- (void)dealloc {
[searchDict release];
[searchArray release];
[super dealloc];
}
static SearchData *sharedSingleton = NULL;
+ (SearchData *)sharedSearchData {
#synchronized(self) {
if (sharedSingleton == NULL)
sharedSingleton = [[self alloc] init];
}
return(sharedSingleton);
}
#end
A very nice, and easy, way to setup a Singleton is to use Matt Gallager's SYNTHESIZE_SINGLETON_FOR_CLASS.
It sounds like you want to make TimeFormatter a singleton, where only one instance can be created. Objective-C doesn't make this super easy, but basically you can expose a static method that returns a pointer to TimeFormatter. This pointer will be allocated and initialized the first time in, and every time after that same pointer can be used. This question has some examples of creating a singleton in Objective-C.
You are trying to declare your variable outside the class? If to do it the way you want to do it you gotta declare it as static so
static TimeFormatter *myFormatter=...
From the name of the class though i dont see why you would wnat to keep one instance of your class... you can also do this with a singleton as described above, that is if you want to keep one instance of your class for the app as a whole.