What's the biggest number in a computer? - numbers

Just asked by my 5 year old kid: what is the biggest number in the computer?
We are not talking about max number for a specific data types, but the biggest number that a computer can represent.
Infinity is not allowed.
UPDATE my kid always wants to print as
well, so lets say the computer needs
to print this number and the kid to
know that its a big number. Of course,
in practice we won't print because
theres not enough trees.

This question is actually a very interesting one which mathematicians have devoted a fair bit of thought to. You can read about it in this article, which is a fascinating and accessible read.
Briefly, a guy named Tibor Rado set out to find some really big, but still well-defined, numbers by defining a sequence called the Busy Beaver numbers. He defined BB(n) to be the largest number of steps any Turing Machine could take before halting, given an input of n symbols. Note that this sequence is by its very nature not computable, so the numbers themselves, while well-defined, are very difficult to pin down. Here are the first few:
BB(1) = 1
BB(2) = 6
BB(3) = 21
BB(4) = 107
... wait for it ...
BB(5) >= 8,690,333,381,690,951
No one is sure how big exactly BB(5) is, but it is finite. And no one has any idea how big BB(6) and above are. But at least these numbers are completely well-defined mathematically, unlike "the largest number any human has ever thought of, plus one." ;)
So how about this:
The biggest number a computer can represent is the most instructions a program small enough to fit in its available memory can perform before halting.
Squared.
No, wait, cubed. No, raised to the power of itself!
Dammit!

Bits are not numbers. You, as a programmer, give them the meaning you want, possibly numbers.
Now, I decide that 1 represents "the biggest number ever thought by a human plus one".

Errr this is a five year old?
How about something along the lines of: "I'd love to tell you but the number is so big and would take so long to say, I'd die before I finished telling you".

// wait to see
for(;;)
{
printf("9");
}

roughly 2^AVAILABLE_MEMORY_IN_BITS
EDIT: The above is for actually storing a number and treats all media (RAM, HD, cloud etc.) as memory. Subtracting the OS footprint (measured in KB) doesn't make "roughly" less accurate...
If you want to "represent" a number in a meaningful way, then you probably want to go with what the CPU provides: unsigned 32 bit integers (roughly 4 Gigs) or unsigned 64 bit integers for most computers your kid will come into contact with.
NOTE for talking to 5-year-olds: Often, they just want a factoid. Give him a really big and very accurate number (lots of digits), like 4'294'967'295. Then, once the glazing leaves his eyes, try to see how far you can get with explaining how computers represent numbers.
EDIT #2: I once read this article: Who Can Name the Bigger Number that should provide a whole lot of interesting information for your kid. Obviously he's not your normal five-year-old. So this might get you started in a cool direction about numbers and computation.

The answer to life (and this kids question): 42

That depends on the datatype you use to represent it. The computer only stores bits (0/1). We, as developers, give the bits meaning. (65 can be a number or the letter A).
For example, I can define my datatype as 1^N where N is unsigned and represented by an array of bits of arbitrary size. The next person can come up with 10^N which would be ten times larger than my biggest number.
Sure, there would be gaps but if you don't need them, that doesn't matter.
Therefore, the question is meaningless since it doesn't have context.

Well I had the same question earlier this day, so thought why not to make a little c++ codes to see where the computer gonna stop ...
But my laptop wasn't with me in class so I used another, well the number was to big but it never ends, i'll run it again for a night then i'll share the number
you can try the code is stupid
#include <stdlib.h>
#include <stdio.h>
int main() {
int i = 0;
for (i = 0; i <= i; i++) {
printf("%i\n", i);
i++;
}
}
And let it run till it stops ^^

The size will obviously be limited by the total size of hard drives you manage to put into your PC. After all, you can store a number in a text file occupying all disk space.
You can have 4x2Tb drives even in a simple box so around 8Tb available. if you store as binary, then the biggest number is 2 pow 64000000000000.

If your hard drive is 1 TB (8'000'000'000'000 bits), and you would print the number that fits on it on paper as hex digits (nobody would do that, but let's assume), that's 2,000,000,000,000 hex digits.
Each page would contain 4000 hex digits (40 x 100 digits). That's 500,000,000 pages.
Now stack the pages on top of each other (let's say each page is 0.004 inches / 0.1 mm thick), then the stack would be as 5 km (about 3 miles) tall.

I'll try to give a practical answer.
Common Lisp number crunching is particularly powerful. It has something called "bignums" which are integers that can be arbitrarily large, limited by the amount of available.
See: http://en.wikibooks.org/wiki/Common_Lisp/Advanced_topics/Numbers#Fixnums_and_Bignums

Don't know much about theory, but I far as I understood from your question, is: what is the largest number that the computer can represent (and I add: in a reasonable time, and not printing "9" until the Earth will "be eaten by the Sun"). And I put my PC to make one simple calculation (in PHP or whatever language): echo pow(2,1023) - resulting: 8.9884656743116E+307. So I guess this is the largest number that my PC can calculate. On the other side, I think the respresentation of the largest negative number can be: -0,(0)1
LE: That computed value was obataind through PHP, but I tried to figure out what's the largest number that my windows calculator can compute, and it is pow(2, 33219) = 8.2304951207588748764521361245002E+9999. Now I guess this is the largest number my PC can handle.

I think you should be very proud that your 5 year old is already asking questions like this.
And you should continue to promote that! This is truly amazing! With that said, I would say that saying Infinity does not
count is thinking incorrectly about what numbers mean in computer memory.
I feel like this way of thinking is a handicap.
Mathematicians will never be able to write out ALL the digits of pi or eulers number, BUT we FULLY understand it.
Pi, as an example, is perfectly represented by infinite this series: (Pi / 4) = 1 - 1/3 + 1/5 - 1/7 + 1/9 - …
Just because you literally can’t go to inf. or print every single digit in a console means nothing.
You could have printed the symbol representing pi and therefore capturing the inf. series.
Computer Algebra Systems (CAS) represent numbers symbolically all the time. Pi, for instance,
may be a Symbolic object in memory (the binary in memory did not DIRECTLY represent the number. It represents an "mathematical algorithm" for producing the answer to arbitrary precision).
Then you do some math with it, transforming from one expression to the next.
At no point in time did we not represent the number COMPLETELY.
At the end, you can do 2 things with this:
A) Evaluate the expression, turning it into a number of some kind (or Matrix or whatever).
BUT this number could very well be an approximation (say like 20 digits of pi).
B) Keep it in its symbolic form for reference. Obviously we don’t like staring at symbols because we
need to eventually turn the nobs on the apparatii.
NOTE: sometimes you can get a finite (non-irrational) number perfectly represented in memory (like number 1)
by taking limits or going to inf. Not literally having an inf. number in memory, but symbolically representing it.
Just throw this in Wolfram alpha: Lim[Exp[-x], x --> Inf]; It gives you the number 0. Which is EXACT.
In short:
It was the HUMANS need to have some binary in memory that DIRECTLY represented the number that caused
the number to degrade. Symbolically it was perfectly represented. You could design some algorithm that
just continues to calculate the next digits of pi or eulers number giving you an arbitrary amount of precision (Now, this is obviously not practical of course).
I hope this was at least somewhat useful or interesting to you, even if you disagree =)

Depends on how much the computer can handle. Although there are some times when the computer can handle numbers greater than (2^(bits-1)-1)... For example:
My computer is 64 bit (9223372036854775807), however the calculator that comes with the computer itself can handle numbers of up to 10^9999.
Many other supercomputers can exceed these limits, and the one with the most memory (bits) might as well be the one with the record (current largest number that can be held by computers).
Or, if it comes to visually seeing it on computers, you can just make a program that, on monitor, repeats writing 9 and not skips that line to form an ever-growing bunch of 9. :P

go on chrome then go on three dots above and click them then go on tools and then go on developer tool click on console and type Number.MAX_VALUE

Related

32-1024 bit fixed point vector arithmetic with AVX-2

For a mandelbrot generator I want to used fixed point arithmetic going from 32 up to maybe 1024 bit as you zoom in.
Now normaly SSE or AVX is no help there due to the lack of add with carry and doing normal integer arithmetic is faster. But in my case I have literally millions of pixels that all need to be computed. So I have a huge vector of values that all need to go through the same iterative formula over and over a million times too.
So I'm not looking at doing a fixed point add/sub/mul on single values but doing it on huge vectors. My hope is that for such vector operations AVX/AVX2 can still be utilized to improve the performance despite the lack of native add with carry.
Anyone know of a library for fixed point arithmetic on vectors or some example code how to do emulate add with carry on AVX/AVX2.
FP extended precision gives more bits per clock cycle (because double FMA throughput is 2/clock vs. 32x32=>64-bit at 1 or 2/clock on Intel CPUs); consider using the same tricks that Prime95 uses with FMA for integer math. With care it's possible to use FPU hardware for bit-exact integer work.
For your actual question: since you want to do the same thing to multiple pixels in parallel, probably you want to do carries between corresponding elements in separate vectors, so one __m256i holds 64-bit chunks of 4 separate bigintegers, not 4 chunks of the same integer.
Register pressure is a problem for very wide integers with this strategy. Perhaps you can usefully branch on there being no carry propagation past the 4th or 6th vector of chunks, or something, by using vpmovmskb on the compare result to generate the carry-out after each add. An unsigned add has carry out of a+b < a (unsigned compare)
But AVX2 only has signed integer compares (for greater-than), not unsigned. And with carry-in, (a+b+c_in) == a is possible with b=carry_in=0 or with b=0xFFF... and carry_in=1 so generating carry-out is not simple.
To solve both those problems, consider using chunks with manual wrapping to 60-bit or 62-bit or something, so they're guaranteed to be signed-positive and so carry-out from addition appears in the high bits of the full 64-bit element. (Where you can vpsrlq ymm, 62 to extract it for addition into the vector of next higher chunks.)
Maybe even 63-bit chunks would work here so carry appears in the very top bit, and vmovmskpd can check if any element produced a carry. Otherwise vptest can do that with the right mask.
This is a handy-wavy kind of brainstorm answer; I don't have any plans to expand it into a detailed answer. If anyone wants to write actual code based on this, please post your own answer so we can upvote that (if it turns out to be a useful idea at all).
Just for kicks, without claiming that this will be actually useful, you can extract the carry bit of an addition by just looking at the upper bits of the input and output values.
unsigned result = a + b + last_carry; // add a, b and (optionally last carry)
unsigned carry = (a & b) // carry if both a AND b have the upper bit set
| // OR
((a ^ b) // upper bits of a and b are different AND
& ~r); // AND upper bit of the result is not set
carry >>= sizeof(unsigned)*8 - 1; // shift the upper bit to the lower bit
With SSE2/AVX2 this could be implemented with two additions, 4 logic operations and one shift, but works for arbitrary (supported) integer sizes (uint8, uint16, uint32, uint64). With AVX2 you'd need 7uops to get 4 64bit additions with carry-in and carry-out.
Especially since multiplying 64x64-->128 is not possible either (but would require 4 32x32-->64 products -- and some additions or 3 32x32-->64 products and even more additions, as well as special case handling), you will likely not be more efficient than with mul and adc (maybe unless register pressure is your bottleneck).As
As Peter and Mystical suggested, working with smaller limbs (still stored in 64 bits) can be beneficial. On the one hand, with some trickery, you can use FMA for 52x52-->104 products. And also, you can actually add up to 2^k-1 numbers of 64-k bits before you need to carry the upper bits of the previous limbs.

Elias Gamma Coding and upper bound

While reading about Elias Gamma coding on wikipedia, I see it mentions that:
"Gamma coding is used in applications where the largest encoded value is not known ahead of time."
and that:
"It is used most commonly when coding integers whose upper-bound cannot be determined beforehand."
I don't really understand what is meant by these sentences, because whenever this algorithm is coded, the largest value of the test data or range of the test data would be known before hand. Any help is appreciated!
As far as I'm acquainted with Elias-gamma/delta encoding, the first sentence simply states that these compression methods are global, which means that it does not rely on the input data to generate the code. In other words, these methods do not need to process the input before performing the compression (as local methods do); it compresses the data with a function that does not depend on information from the database.
As for the second sentence, it may be taken as a guarantee that, although there may be some very large integers, the encoding will still perform well (and will represent such values with feasible amount of bytes, i.e., it is a universal method). Notice that, if you knew the biggest integer, some approaches (like minimal hashes) could perform better.
As a last consideration, the same page you referred to also states that:
Gamma coding is used in applications where the largest encoded value is not known ahead of time, or to compress data in which small values are much more frequent than large values.
This may be obtained by generating lists of differences from the original lists of integers, and passing such differences to be compressed instead. For example, in a list of increasing numbers, you could generate:
list: 1 5 29 32 35 36 37
diff: 1 4 24 3 3 1 1
Which will give you many more small numbers, and therefore a greater level of compression, than the first list.

Getting around floating point error with logarithms?

I'm trying to write a basic digit counter (an integer is inputted and the number of digits of that integer is outputted) for positive integers. This is my general formula:
dig(x) := Math.floor(Math.log(x,10))
I tried implementing the equivalent of dig(x) in Ruby, and found that when I was computing dig(1000) I was getting 2 instead of 3 because Math.log was returning 2.9999999999999996 which would then be truncated down to 2. What is the proper way to handle this problem? (I'm assuming this problem can occur regardless of the language used to implement this approach, but if that's not the case then please explain that in your answer).
To get an exact count of the number of digits in an integer, you can do the usual thing: (in C/C++, assuming n is non-negative)
int digits = 0;
while (n > 0) {
n = n / 10; // integer division, just drops the ones digit and shifts right
digits = digits + 1;
}
I'm not certain but I suspect running a built-in logarithm function won't be faster than this, and this will give you an exact answer.
I thought about it for a minute and couldn't come up with a way to make the logarithm-based approach work with any guarantees, and almost convinced myself that it is probably a doomed pursuit in the first place because of floating point rounding errors, etc.
From The Art of Computer Programming volume 2, we will eliminate one bit of error before the floor function is applied by adding that one bit back in.
Let x be the result of log and then do x += x / 0x10000000 for a single precision floating point number (C's float). Then pass the value into floor.
This is guaranteed to be the fastest (assuming you have the answer in numerical form) because it uses only a few floating point instructions.
Floating point is always subject to roundoff error; that's one of the hazards you need to be aware of, and actively manage, when working with it. The proper way to handle it, if you must use floats is to figure out what the expected amount of accumulated error is and allow for that in comparisons and printouts -- round off appropriately, compare for whether the difference is within that range rather than comparing for equality, etcetera.
There is no exact binary-floating-point representation of simple things like 1/10th, for example.
(As others have noted, you could rewrite the problem to avoid using the floating-point-based solution entirely, but since you asked specifically about working log() I wanted to address that question; apologies if I'm off target. Some of the other answers provide specific suggestions for how you might round off the result. That would "solve" this particular case, but as your floating operations get more complicated you'll have to continue to allow for roundoff accumulating at each step and either deal with the error at each step or deal with the cumulative error -- the latter being the more complicated but more accurate solution.)
If this is a serious problem for an application, folks sometimes use scaled fixed point instead (running financial computations in terms of pennies rather than dollars, for example). Or they use one of the "big number" packages which computes in decimal rather than in binary; those have their own round-off problems, but they round off more the way humans expect them to.

Rounding Pi in Perl to the 100 millionth decimal place?

For a Science Fair project, I am testing how your choice of programming language could affect performance. I am doing this by making scripts in Java, Ruby, Perl, and Python to calculate Pi to the 100 millionth decimal place. I'm starting with Perl, since I'm most familiar with Perl. However, this brings an interesting problem to the table. I need to round Pi to the 100 millionth digit in Perl, but as far as I can see, Perl has no good rounding method for this situation. There's only stuff like
use Math::Round;
$rounded = nearest(0.1, $numb);
And that's a bit of a problem, since I don't want to sit at my computer typing 100 million zeros. As far as I know, sprintf and printf aren't any better; plus, they have that annoying half to even thing. Can anyone help out?
P.S. I'm planning to use the Chudnovsky Formula, if it matters to anyone.
I don't think any programming language can natively do what you are asking. Even bignum libraries like Math::BigRat (default 40 digits) and Math::Bignum cannot do 100 million digits.
To make it happen, you will have to create your own custom way to represent such big numbers and how to round them.
Think about the problem in another way. You need to round to 100 million (1E8) digits but you don't need to process all 1E8 digits in one go to do that.
Instead,
Use the Chudnovsky Formula to calculate 1E8 +1 digits.
Store the digits in a string (if you have the memory) or a file.
Select the last n (something small like 8 or even 2) digits.
If they aren't all 9 round to n-1 digits.
If they are then convert them to (n-1) * 0 digits. Then read the next n digits from the end and repeat 4 and 5.
However, if the goal is to test relative performance of languages by generating 1E8 digits of Pi then why bother focus on the rather artificial constraint of rounding that number. If you use the same algorithm then any language should produce the same result. And you have a 50% chance of generating a rounded number anyway.
This is one step closer (though I haven't tested whether it can handle 100 million zeros). You'll need to use bignum to handle those sorts of numbers.
use bignum;
use Math::Round;
$rounded = nearest(1e-100_000_001, $numb);
Also, bignum has its own pi function with an accuracy parameter:
$rounded = bignum::bpi(100_000_001);

redundant encoding?

This is more of a computer science / information theory question than a straightforward programming one, so if anyone knows of a better site to post this, please let me know.
Let's say I have an N-bit piece of data that will be sent redundantly in M messages, where at least M-1 of those messages will be received successfully. I am interested in different ways of encoding the N-bit piece of data in fewer bits per message. (this is similar to RAID but at a much smaller level, where N = 8 or 16 or 32)
Example: suppose N = 16 and M = 4. Then I could use the following algorithm:
1st and 3rd message: send "0" + bits 0-7
2nd and 4th message: send "1" + bits 8-15
If I can guarantee that 3 messages of the 4 will get through, then at least one message from each group will get through. Thus I can make this work with 9 bits or less, there's probably a way to do this with fewer total bits but I'm not sure how.
Are there some simple encoding/decoding algorithms to do this kind of thing? Does this problem have a name? (if I know what it's called, I can google it!)
note: in my particular case, the messages either arrive correctly or do not arrive at all (no messages arrive with errors).
(edit: moved 2nd part to a separate question)
(Incomplete answer follows. I may add more later.)
The term you may be interested in is channel coding: adding redundancy to a source in order to make it robust during transmission over a noisy channel. In information theory, the complementary problem to channel coding is source coding: reducing the redundancy in a source to represent it using fewer bits. (The combination of these two problems is called joint source-channel coding.)
Your first question asks to find a channel code. The simple example you give is similar to a repetition code, i.e., you send the same message more than twice (usually an odd number of times), and then the message which is received most often is accepted as the original message.
This code is inefficient. To use standard notation, let k = number of bits in original message, and n = number of bits in the transmitted message. For your example, k = 16 and n = 36. A measure of coding efficiency is k/n, where higher means more efficient. In your case, k/n = 0.44. This is low.
The repetition code is a simple kind of block code, i.e., redundancy is added to each block of k bits to create a codeword of n bits. So are the Hamming and Reed-Solomon codes as others mentioned. Hamming codes are relatively easy to understand with some basic linear algebra.
These should be enough terms for you to search on your own. Good luck.
I'm not sure if I understood all the details of your question correctly, but your problem is definitely aboud designing some kind of error correcting code. This is a vast area of computer science and thick tomes have been written about it. Start with wikipedia and see if you can get any simple schemes (like Hamming or Reed-Solomon codes) to work in your case.
If you want to deal not only with symbol corruption, but also deletion of symbols, you should look at erasure codes, this is definitely a more difficult task but good methods exist in many cases.
EDIT: This material from hackersdelight.org seems a nice introduction.
See erasure codes.
You're looking for a packet erasure code. There are only two useful packet erasure codes that are not totally encumbered by patents, and there's only one open-source library to implement those. Find it here: http://planete-bcast.inrialpes.fr/rubrique.php3?id_rubrique=5
Here's a trivially simple scheme that's almost twice as efficient as your example.
You chopped the message into blocks of (N/M)*2 bits. Instead, chop it into N/(M-1)-bit blocks. (Round it up if necessary.) The first block, src[0], encodes as itself: enc[0]=src[0]. The same for the last block: enc[M-1]=src[M-1]. Each of the other blocks gets XORed with its left neighbor: enc[i]=src[i-1]^src[i].
Prefix each encoded block with a log(M)-bit sequence number, essentially as you did, so the receiver can tell which was dropped. (If you can be sure that whichever blocks arrive will arrive in order, then a 1-bit sequence number will do. Just alternate 0 and 1.)
To decode, successively XOR from the left and the right until you hit the dropped block. E.g. src[1] == enc[0]^enc[1]. (Dropping one of the endpoint blocks isn't a special case -- e.g. if the first block is dropped, the scan from the right recovers it, and the scan from the left is of length 0.)