I am having some discrete points, by using which I can plot spline curve(Syncfusion chart) in flutter. But now I have to find the point on that curve i.e. by giving values of x, I need value of y. I am stucked here and don't have any algorithm to apply for that. How did they make graph using discrete point ? There should be some algorithm which can be applied here and get those point.
Please help me out
Thanks in advance!!
I am here with a great solution to this problem, So The idea goes like if we have n points for equilibrium data, then we will assume a polynomial of order n-1(For eg. no. of points on equilibrium curve to be 3 then the polynomial should be quadratic of form y= Ax²+Bx+C). Now as we have 3 variables(A, B, C), then to solve this equation we need 3 equations in terms of A, B and C. These equations are obtained by putting the equilibrium data points, in this case 3 points so we will get 3 equations. These three equations can be solved by using Cramer's rule. After solving the equation we will get the equation of the curve.
The equation thus obtained will be more accurate and as cramer's rule can be obtained to any number of equations, then we can easily obtain polynomial equation of any order.This method is quite big and will be time taking to apply.
This will give you the curve for a given number of points
Related
Hi i have data in the form of two column vectors (z,y) which forms an exponential curve.
And I want to find 1 unknown for it by fitting a curve of the form i.e. solve for b in the equation
y= (1-0.05*x^(b))/(1-0.05*x^b)^2
I want to solve for b which gives a good fit for data (z,y) however the only known parameter is z and y. Is there possible way I could solve for b? any tips on how to proceed with this equation? The x values are unknown and x seem to be the main problem!
Thanks!
I have a matlab script that performs curve fitting on a set of curves using polynomials of third, second and first order (using polyfit with the desired order) and also using DCT of 4,3 and 2 coefficients (invoking dct for the whole array and then truncating just the first 4,3 or 2 coeffs).
I'm able to get a graphical view of the accuracy of each curve fitting using polyval and idct for the 2 types of curve fitting, but I was wondering if there is any way of getting a numeric value of the accuracy that makes sense for both approaches (dct and polyfit).
I'm sure this is more a maths question rather than a Matlab question, but maybe there is some way to obtain a simple and elegant way in a array-based algorithm that I haven't thought of yet.
Thanks in advance for your comments!
EDIT: What about correlation? :D
In the cuve fitting tool there should be a residual that uses standard deviation. If you are interested in another way to do it maybe you should use rmse for the entire curve, scripting a function that does something like:
input args : y1 = (curve going to be fitted), y2 = (fitted curve)
For each value in y, sum up the difference y1-y2 squared
Divide with the number of entries
Provided you are now left with a number, return its square root
See http://en.wikipedia.org/wiki/Root-mean-square_deviation#Formula for more.
I have a set of 4 PDEs:
du/dt + A(u) * du/dx = Q(u)
where,u is a matrix and contains:
u=[u1;u2;u3;u4]
and A is a 4*4 matrix. Q is 4*1. A and Q are function of u=[u1;u2;u3;u4].
But my questions are:
How can I solve above equation in MATLAB?
If I solved it by PDE functions of Matlab,can I convert it to a
simple function that is not used from ready functions of Matlab?
Is there any way that I calculate A and Q explicitly. I mean that in
every time step, I calculate A and Q from data of previous time step
and put new value in the equation that causes faster run of program?
PDEs require finite differences, finite elements, boundary elements, etc. You can also turn them into ODEs using transforms like Laplace, Fourier, etc. Solve those using ODE functions and then transform back. Neither one is trivial.
Your equation is a non-linear transient diffusion equation. It's a parabolic PDE.
The equation you posted has the additional difficulty of being non-linear, because both the A matrix and Q vector are functions of the independent variable q. You'll have to start by linearizing your equations. Solve for increments in u rather than u itself.
Once you've done that, discretize the du/dx term using finite differences, finite elements, or boundary elements. You should start with a weighted residual integral formulation.
You're almost done: Next to integrate w.r.t. time using the method of your choice.
It's not trivial.
Google found this: maybe it will help you.
http://www.mathworks.com/matlabcentral/fileexchange/3710-nonlinear-diffusion-toolbox
This question has already confused me several days. While I referred to senior students, they also cannot give a reply.
We have ten ODEs, into which each a noise term should be added. The noise is defined as follows. since I always find that I cannot upload a picture, the formula below maybe not very clear. In order to understand, you can either read my explanation or go the this address: Plos one. You could find the description of the equations directly above the Support Information in this address
The white noise term epislon_i(t) is assumed with Gaussian distribution. epislon_i(t) means that for equation i, and at t timepoint, the value of the noise.
the auto-correlation of noise are given:
(EQ.1)
where delta(t) is the Dirac delta function and the diffusion matrix D is defined by
(EQ.2)
Our problem focuses on how to explain the Dirac delta function in the diffusion matrix. Since the property of Dirac delta function is delta(0) = Inf and delta(t) = 0 if t neq 0, we don't know how to calculate the epislonif we try to sqrt of 2D(x, t)delta(t-t'). So we simply assume that delta(0) = 1 and delta(t) = 0 if t neq 0; But we don't know whether or not this is right. Could you please tell me how to use Delta function of diffusion equation in MATLAB?
This question associates with the stochastic process in MATLAB. So we review different stochastic process to inspire our ideas. In MATLAB, the Wienner process is often defined as a = sqrt(dt) * rand(1, N). N is the number of steps, dt is the length of the steps. Correspondingly, the Brownian motion can be defined as: b = cumsum(a); All of these associate with stochastic process. However, they doesn't related to the white noise process which has a constraints on the matrix of auto-correlation, noted by D.
Then we consider that, we may simply use randn(1, 10) to generate a vector representing the noise. However, since the definition of the noise must satisfy the equation (2), this cannot enable noise term in different equation have the predefined partial correlation (D_ij). Then we try to use mvnrnd to generate a multiple variable normal distribution at each time step. Unfortunately, the function mvnrnd in MATLAB return a matrix. But we need to return a vector of length 10.
We are rather confused, so could you please give me just a light? Thanks so much!
NOTE: I see two hazy questions in here: 1) how to deal with a stochastic term in a DE and 2) how to deal with a delta function in a DE. Both of these are math related questions and http://www.math.stackexchange.com will be a better place for this. If you had a question pertaining to MATLAB, I haven't been able to pin it down, and you should perhaps add code examples to better illustrate your point. That said, I'll answer the two questions briefly, just to put you on the right track.
What you have here are not ODEs, but Stochastic differential equations (SDE). I'm not sure how you're using MATLAB to work with this, but routines like ode45 or ode23 will not be of any help. For SDEs, your usual mathematical tools of separation of variables/method of characteristics etc don't work and you'll need to use Itô calculus and Itô integrals to work with them. The solutions, as you might have guessed, will be stochastic. To learn more about SDEs and working with them, you can consider Stochastic Differential Equations: An Introduction with Applications by Bernt Øksendal and for numerical solutions, Numerical Solution of Stochastic Differential Equations by Peter E. Kloeden and Eckhard Platen.
Coming to the delta function part, you can easily deal with it by taking the Fourier transform of the ODE. Recall that the Fourier transform of a delta function is 1. This greatly simplifies the DE and you can take an inverse transform in the very end to return to the original domain.
Starting from the plot of one curve, it is possible to obtain the parametric equation of that curve?
In particular, say x={1 2 3 4 5 6....} the x axis, and y = {a b c d e f....} the corresponding y axis. I have the plot(x,y).
Now, how i can obtain the equation that describe the plotted curve? it is possible to display the parametric equation starting from the spline interpolation?
Thank you
If you want to display a polynomial fit function alongside your graph, the following example should help:
x=-3:.1:3;
y=4*x.^3-5*x.^2-7.*x+2+10*rand(1,61);
p=polyfit(x,y,3); %# third order polynomial fit, p=[a,b,c,d] of ax^3+bx^2+cx+d
yfit=polyval(p,x); %# evaluate the curve fit over x
plot(x,y,'.')
hold on
plot(x,yfit,'-g')
equation=sprintf('y=%2.2gx^3+%2.2gx^2+%2.2gx+%2.2g',p); %# format string for equation
equation=strrep(equation,'+-','-'); %# replace any redundant signs
text(-1,-80,equation) %# place equation string on graph
legend('Data','Fit','Location','northwest')
Last year, I wrote up a set of three blogs for Loren, on the topic of modeling/interpolationg a curve. They may cover some of your questions, although I never did find the time to add another 3 blogs to finish the topic to my satisfaction. Perhaps one day I will get that done.
The problem is to recognize there are infinitely many curves that will interpolate a set of data points. A spline is a nice choice, because it can be made well behaved. However, that spline has no simple "equation" to write down. Instead, it has many polynomial segments, pieced together to be well behaved.
You're asking for the function/mapping between two data sets. Knowing the physics involved, the function can be derived by modeling the system. Write down the differential equations and solve it.
Left alone with just two data series, an input and an output with a 'black box' in between you may approximate the series with an arbitrary function. You may start with a polynomial function
y = a*x^2 + b*x + c
Given your input vector x and your output vector y, parameters a,b,c must be determined applying a fitness function.
There is an example of Polynomial Curve Fitting in the MathWorks documentation.
Curve Fitting Tool provides a flexible graphical user interfacewhere you can interactively fit curves and surfaces to data and viewplots. You can:
Create, plot, and compare multiple fits
Use linear or nonlinear regression, interpolation,local smoothing regression, or custom equations
View goodness-of-fit statistics, display confidenceintervals and residuals, remove outliers and assess fits with validationdata
Automatically generate code for fitting and plottingsurfaces, or export fits to workspace for further analysis