Does the defstruct instantiation evaluate its &key arguments? - lisp

I'm trying to nest instances of defstructs as some of the &key arguments in another defstruct, as demonstrated by the code below. For some reason, the variables to be inserted into the outer defstruct are not being replaced with the values bound to them (which is what I would expect). Any explanations and/or suggestions would be appreciated.
(defstruct (compound (:conc-name nil)) op args)
(defstruct (var (:conc-name nil)) name)
(let* ((x (make-var :name 'x))
(y (make-var :name 'y))
(my (make-compound :op 'Mother :args y))
(s1 (make-compound :op 'knows :args '(y my)))
(s2 (make-compound :op 'knows :args '('John x))))
s1)
=> #S(COMPOUND :OP KNOWS :ARGS (Y MY))

'(y my) is a literal list that contains two symbols - Y and MY. (list y my) would create a list of two values, first is the value of variable Y, second is value of variable MY. The same is with '('John x) - it's a literal list that contains two elements - a list (QUOTE JOHN) and symbol X.

Related

In Lisp, can you construct a `check-type` that throws an error if the value is not a hash-table with all integer keys and values?

Say I have a function:
(defun distribution-to-list (distribution)
(check-type distribution hash-table)
(loop for key being each hash-key of distribution
using (hash-value value) nconc (loop repeat value collect key)))
I want to ensure that at least all the values of the hash-table that are passed in are integers, as I'm using them to repeat values into a big list. Is there any way to do so with check-type before the inner loop? Or would it be good enough practice to let the inner loop macro throw a type error when it tries to repeat a string? (or whatever non integer type)
If you can write a function that can check whether a value is acceptable, then you can use satisfies to construct a type specifier, such as (satisfies is-acceptable). E.g.,
(defun all-integer-keys-p (ht)
(loop for k being each hash-key in ht
always (integerp k)))
(let ((h (make-hash-table)))
;; when the table contains only integer
;; keys, we're fine
(setf (gethash 1 h) 'foo
(gethash 2 h) 'bar)
(check-type h (satisfies all-integer-keys-p))
;; but a non-integer key will lead to an
;; error from CHECK-TYPE
(setf (gethash 'three h) 'baz)
(check-type h (satisfies all-integer-keys-p)))
With deftype, you can define a type as shorthand for (satisfies all-integer-keys-p), which you may find more readable:
(deftype all-integer-key-hash-table ()
`(satisfies all-integer-keys-p))
(let ((h (make-hash-table)))
(setf (gethash 1 h) 'foo
(gethash 2 h) 'bar)
(check-type h all-integer-key-hash-table)
(setf (gethash 'three h) 'baz)
(check-type h all-integer-key-hash-table))

lisp macro to build a list of an expression and it's evaluation

I'm trying to write a macro in Common Lisp that takes any number of expressions and builds a list containing each expression followed by its evaluation in a single line. For example, if I name my macro as
(defmacro list-builder (&rest exp)
...)
and I run
(let ((X 1) (Y 2)) (list-builder (+ X Y) (- Y X) X))
I want it to return:
'((+ X Y) 3 (- Y X) 1 X 1)
The best I've been able to do so far is get a list of the expressions using the code
(defmacro list-builder (&rest exp)
`',#`(',exp ,exp))
INPUT: (let ((X 1) (Y 2)) (list-builder (+ X Y) (+ Y X) X))
'((+ X Y) (+ Y X) X)
Strictly speaking, the macro itself cannot do that; what the macro must do is generate code in which the argument expressions are embedded in such a way that they are evaluated, and also in such a way that they are quoted.
Given (list-builder (+ x y) (+ y x) x) we would like to generate this code: (list '(+ x y) (+ x y) '(+ y x) (+ y x) 'x x).
We can split the macro into an top-level wrapper defined with defmacro and an expander function that does the bulk of the work of producing the list arguments; The macro's body just sticks the list symbol on it and returns it.
Macro helper functions have to be wrapped with a little eval-when dance in Common Lisp to make sure they are available in all conceivable situations that the macro might be processed:
(eval-when (:compile-toplevel :load-toplevel :execute)
(defun list-builder-expander (exprs)
(cond
((null exprs) nil)
((atom exprs) (error "list-builder: dotted syntax unsupported":))
(t (list* `',(car exprs) (car exprs)
(list-builder-expander (cdr exprs)))))))
(defmacro list-builder (&rest exprs)
(cons 'list (list-builder-expander exprs)))
A "slick" implementation, all in one defmacro, inside a single backquote expression, might go like this:
(defmacro list-builder (&rest exprs)
`(list ,#(mapcan (lambda (expr) (list `',expr expr)) exprs)))
The "dotted syntax unsupported" check we implemented before now becomes an error out of mapcan.
The lambda turns each expression E into the list ((quote E) E). mapcan catenates these lists together to form the arguments for list, which are then spliced into the (list ...) form with ,#.
The form `',expr follows from applying the quote shorthand to `(quote ,expr).
Of course, a lisp macro can do that. Since lisp macros provide full control over evaluation of their arguments.
You have to use macro helper functions only in cases in which you want to use recursion. Since macros have problems to call themselves recursively.
But by looping over the &rest rest argument, you can generate variadic macros (macros with arbitrary number of arguments) and still control the evaluation of each of its arguments.
After some trial and error cycles (macro construction is an incremental procedure, since macros are complex structures), I obtained the
"simpler" solution:
(defmacro list-builder (&rest rest)
`(list ,#(loop for x in `,rest
nconcing (list `',x x))))
Test by:
(let ((X 1)
(Y 2))
(list-builder (+ X Y) (- Y X) X))
;; ((+ X Y) 3 (- Y X) 1 X 1)
Sometimes, in loop constructs, instead of collect/collecting, use nconc/nconcing in combination with (list ...) to have more control over how the elements are consed together.
The
(list `',x x)
ensures, that the second x gets evaluated, while the first
`',x
places the content of x into the expression, while its quoting prevents the evluation of the expression placed for x.
The outer list in combination with the splicing of the loop construct into it,
finally captures (prevents) the intrinsic very final evaluation of the macro body.
(defmacro list-builder (&rest args)
`(let ((lst ',args)
(acc nil))
(dolist (v lst)
(push v acc)
(push (eval v) acc))
(nreverse acc)))
We could create the list builder macro to take rest parameters as you did (I simply renamed them as args for pseudo code). I'd create a quoted list (lst) of the expressions within the list, and an empty list (acc) to store the expressions and whatever they evaluate to later. Then we can use dolist to iterate through our list and push each expression to the list, followed by whatever it evaluates to by running eval on the expression. Then we can finally use nreverse to get the correct order for the list.
We can then call it:
(let ((x 1)
(y 2))
(declare (special x))
(declare (special y))
(list-builder (+ x y) (- y x) x))
The result will be:
((+ X Y) 3 (- Y X) 1 X 1)
CL-USER>

macro to feed a calculated binding list into a 'let'?

I'm trying different binding models for macro lambda lists.
Edit: in fact the lambda list for my test macros is always (&rest ...). Which means that I'm 'destructuring' the argument list and not the lambda list. I try to get a solution that works for combining optional with key arguments or rest/body with key arguments - both combinations don't work in the Common Lisp standard implementation.
So I have different functions giving me a list of bindings having the same syntax as used by 'let'.
E.g:
(build-bindings ...) => ((first 1) middle (last "three"))
Now I thought to use a simple macro inside my test macros feeding such a list to 'let'.
This is trivial if I have a literal list:
(defmacro let-list (_list &rest _body)
`(let ,_list ,#_body))
(let-list ((a 236)) a) => 236
But that's the same as a plain 'let'.
What I'd like to have is the same thing with a generated list.
So e.g.
(let-list (build-bindings ...)
(format t "first: ~s~%" first)
last)
with (build-bindings ...), evaluated in the same lexical scope as the call (let-list ...), returning
((first 1) middle (last "three"))
the expansion of the macro should be
(let
((first 1) middle (last "three"))
(format t "first: ~s~%" first)
last)
and should print 1 and return "three".
Any idea how to accomplish that?
Edit (to make the question more general):
If I have a list of (symbol value) pairs, i.e. same syntax that let requires for it's list of bindings, e.g. ((one 1) (two 'two) (three "three")), is there any way to write a macro that creates lexical bindings of the symbols with the supplied values for it's &rest/&body parameter?
This is seems to be a possible solution which Joshua pointed me to:
(let ((list_ '((x 23) (y 6) z)))
(let
((symbols_(loop for item_ in list_
collect (if (listp item_) (car item_) item_)))
(values_ (loop for item_ in list_
collect (if (listp item_) (cadr item_) nil))))
(progv symbols_ values_
(format t "x ~s, y ~s, z ~s~%" x y z))))
evaluates to:
;Compiler warnings :
; In an anonymous lambda form: Undeclared free variable X
; In an anonymous lambda form: Undeclared free variable Y
; In an anonymous lambda form: Undeclared free variable Z
x 23, y 6, z NIL
I could also easily rearrange my build-bindings functions to return the two lists needed.
One problem is, that the compiler spits warnings if the variables have never been declared special.
And the other problem that, if the dynamically bound variables are also used in a surrounding lexical binding, they a shadowed by the lexical binding - again if they have never been declared special:
(let ((x 47) (y 11) (z 0))
(let ((list_ '((x 23) (y 6) z)))
(let
((symbols_(loop for item_ in list_
collect (if (listp item_) (car item_) item_)))
(values_ (loop for item_ in list_
collect (if (listp item_) (cadr item_) nil))))
(progv symbols_ values_
(format t "x ~s, y ~s, z ~s~%" x y z)))))
evaluates to:
x 47, y 11, z 0
A better way could be:
(let ((x 47) (y 11) (z 0))
(locally
(declare (special x y))
(let ((list_ '((x 23) (y 6) z)))
(let
((symbols_(loop for item_ in list_
collect (if (listp item_) (car item_) item_)))
(values_ (loop for item_ in list_
collect (if (listp item_) (cadr item_) nil))))
(progv symbols_ values_
(format t "x ~s, y ~s, z ~s~%" x y z))))))
evaluates to:
;Compiler warnings about unused lexical variables skipped
x 23, y 6, z NIL
I can't see at the moment whether there are other problems with the dynamic progv bindings.
But the whole enchilada of a progv wrapped in locally with all the symbols declared as special cries for a macro again - which is again not possible due to same reasons let-list doesn't work :(
The possiblilty would be a kind of macro-lambda-list destructuring-hook which I'm not aware of.
I have to look into the implementation of destructuring-bind since that macro does kind of what I'd like to do. Perhaps that will enlight me ;)
So a first (incorrect) attempt would look something like this:
(defun build-bindings ()
'((first 1) middle (last "three")))
(defmacro let-list (bindings &body body)
`(let ,bindings
,#body))
Then you could try doing something like:
(let-list (build-bindings)
(print first))
That won't work, of course, because the macro expansion leaves the form (build-bindings) in the resulting let, in a position where it won't be evaluated:
CL-USER> (pprint (macroexpand-1 '(let-list (build-bindings)
(print first))))
(LET (BUILD-BINDINGS)
(PRINT FIRST))
Evaluation during Macroexpansion time
The issue is that you want the result of build-bindings at macroexpansion time, and that's before the code as a whole is run. Now, in this example, build-bindings can be run at macroexpansion time, because it's not doing anything with any arguments (remember I asked in a comment what the arguments are?). That means that you could actually eval it in the macroexpansion:
(defmacro let-list (bindings &body body)
`(let ,(eval bindings)
,#body))
CL-USER> (pprint (macroexpand-1 '(let-list (build-bindings)
(print first))))
(LET ((FIRST 1) MIDDLE (LAST "three"))
(PRINT FIRST))
Now that will work, insofar as it will bind first, middle, and last to 1, nil, and "three", respectively. However, if build-bindings actually needed some arguments that weren't available at macroexpansion time, you'd be out of luck. First, it can take arguments that are available at macroexpansion time (e.g., constants):
(defun build-bindings (a b &rest cs)
`((first ',a) (middle ',b) (last ',cs)))
CL-USER> (pprint (macroexpand-1 '(let-list (build-bindings 1 2 3 4 5)
(print first))))
(LET ((FIRST '1) (MIDDLE '2) (LAST '(3 4 5)))
(PRINT FIRST))
You could also have some of the variables appear in there:
(defun build-bindings (x ex y why)
`((,x ,ex) (,y ,why)))
CL-USER> (pprint (macroexpand-1 '(let-list (build-bindings 'a 'ay 'b 'bee)
(print first))))
(LET ((A AY) (B BEE))
(PRINT FIRST))
What you can't do, though, is have the variable names be determined from values that don't exist until runtime. E.g., you can't do something like:
(let ((var1 'a)
(var2 'b))
(let-list (build-bindings var1 'ay var2 'bee)
(print first))
because (let-list (build-bindings …) …) is macroexpanded before any of this code is actually executed. That means that you'd be trying to evaluate (build-bindings var1 'ay var2 'bee) when var1 and var2 aren't bound to any values.
Common Lisp does all its macroexpansion first, and then evaluates code. That means that values that aren't available until runtime are not available at macroexpansion time.
Compilation (and Macroexpansion) at Runtime
Now, even though I said that Common Lisp does all its macroexpansion first, and then evaluates code, the code above actually uses eval at macroexpansion to get some extra evaluation earlier. We can do things in the other direction too; we can use compile at runtime. That means that we can generate a lambda function and compile it based on code (e.g., variable names) provided at runtime. We can actually do this without using a macro:
(defun %dynamic-lambda (bindings body)
(flet ((to-list (x) (if (listp x) x (list x))))
(let* ((bindings (mapcar #'to-list bindings))
(vars (mapcar #'first bindings))
(vals (mapcar #'second bindings)))
(apply (compile nil `(lambda ,vars ,#body)) vals))))
CL-USER> (%dynamic-lambda '((first 1) middle (last "three"))
'((list first middle last)))
;=> (1 NIL "three")
This compiles a lambda expression that is created at runtime from a body and a list of bindings. It's not hard to write a macro that takes some fo the quoting hassle out of the picture:
(defmacro let-list (bindings &body body)
`(%dynamic-lambda ,bindings ',body))
CL-USER> (let-list '((first 1) middle (last "three"))
(list first middle last))
;=> (1 NIL "three")
CL-USER> (macroexpand-1 '(let-list (build-bindings)
(list first middle last)))
;=> (%DYNAMIC-LAMBDA (BUILD-BINDINGS) '((LIST FIRST MIDDLE LAST)))
CL-USER> (flet ((build-bindings ()
'((first 1) middle (last "three"))))
(let-list (build-bindings)
(list first middle last)))
;=> (1 NIL "three")
This gives you genuine lexical variables from a binding list created at runtime. Of course, because the compilation is happening at runtime, you lose access to the lexical environment. That means that the body that you're compiling into a function cannot access the "surrounding" lexical scope. E.g.:
CL-USER> (let ((x 3))
(let-list '((y 4))
(list x y)))
; Evaluation aborted on #<UNBOUND-VARIABLE X {1005B6C2B3}>.
Using PROGV and special variables
If you don't need lexical variables, but can use special (i.e., dynamically scoped) variables instead, you can establish bindings at runtime using progv. That would look something like:
(progv '(a b c) '(1 2 3)
(list c b a))
;;=> (3 2 1)
You'll probably get some warnings with that if run it, because when the form is compiled, there's no way to know that a, b, and c are supposed to be special variables. You can use locally to add some special declarations, though:
(progv '(a b c) '(1 2 3)
(locally
(declare (special a b c))
(list c b a)))
;;=> (3 2 1)
Of course, if you're doing this, then you have to know the variables in advance which is exactly what you were trying to avoid in the first place. However, if you're willing to know the names of the variables in advance (and your comments seem like you might be okay with that), then you can actually use lexical variables.
Lexical variables with values computed at run time
If you're willing to state what the variables will be, but still want to compute their values dynamically at run time, you can do that relatively easily. First, lets write the direct version (with no macro):
;; Declare three lexical variables, a, b, and c.
(let (a b c)
;; Iterate through a list of bindings (as for LET)
;; and based on the name in the binding, assign the
;; corresponding value to the lexical variable that
;; is identified by the same symbol in the source:
(dolist (binding '((c 3) (a 1) b))
(destructuring-bind (var &optional value)
(if (listp binding) binding (list binding))
(ecase var
(a (setf a value))
(b (setf b value))
(c (setf c value)))))
;; Do something with the lexical variables:
(list a b c))
;;=> (1 NIL 3)
Now, it's not too hard to write a macrofied version of this. This version isn't perfect, (e.g., there could be hygiene issues with names, and declarations in the body won't work (because the body is being spliced in after some stuff). It's a start, though:
(defmacro computed-let (variables bindings &body body)
(let ((assign (gensym (string '#:assign-))))
`(let ,variables
(flet ((,assign (binding)
(destructuring-bind (variable &optional value)
(if (listp binding) binding (list binding))
(ecase variable
,#(mapcar (lambda (variable)
`(,variable (setf ,variable value)))
variables)))))
(map nil #',assign ,bindings))
,#body)))
(computed-let (a b c) '((a 1) b (c 3))
(list a b c))
;;=> (1 NIL 3)
One way of making this cleaner would be to avoid the assignment altogether, and the computed values to provide the values for the binding directly:
(defmacro computed-let (variables bindings &body body)
(let ((values (gensym (string '#:values-)))
(variable (gensym (string '#:variable-))))
`(apply #'(lambda ,variables ,#body)
(let ((,values (mapcar #'to-list ,bindings)))
(mapcar (lambda (,variable)
(second (find ,variable ,values :key 'first)))
',variables)))))
This version creates a lambda function where the arguments are the specified variables and the body is the provided body (so the declarations in the body are in an appropriate place), and then applies it to a list of values extracted from the result of the computed bindings.
Using LAMBDA or DESTRUCTURING-BIND
since I'm doing some "destructuring" of the arguments (in a bit a different way), I know which arguments must be present or have which
default values in case of missing optional and key arguments. So in
the first step I get a list of values and a flag whether an optional
or key argument was present or defaulted. In the second step I would
like to bind those values and/or present/default flag to local
variables to do some work with them
This is actually starting to sound like you can do what you need to by using a lambda function or destructuring-bind with keyword arguments. First, note that you can use any symbol as a keyword argument indicator. E.g.:
(apply (lambda (&key
((b bee) 'default-bee b?)
((c see) 'default-see c?))
(list bee b? see c?))
'(b 42))
;;=> (42 T DEFAULT-SEE NIL)
(destructuring-bind (&key ((b bee) 'default-bee b?)
((c see) 'default-see c?))
'(b 42)
(list bee b? see c?))
;;=> (42 T DEFAULT-SEE NIL)
So, if you just make your function return bindings as a list of keyword arguments, then in the destructuring or function application you can automatically bind corresponding variables, assign default values, and check whether non-default values were provided.
Acting a bit indirectly:
a solution that works for combining optional with key arguments or
rest/body with key arguments
Have you considered the not-entirely-uncommon paradigm of using a sub-list for the keywords?
e.g.
(defmacro something (&key (first 1) second) &body body) ... )
or, a practical use from Alexandria:
(defmacro with-output-to-file ((stream-name file-name
&rest args
&key (direction nil direction-p)
&allow-other-keys)
&body body)

explanation of lambda expression in scheme

I was wondering if anyone could explain this lambda expression and how the output is derived. I put it into the interpreter and am getting ((2) 2). I'm just not sure why it's giving me that instead of just (2 2).
((lambda x (cons x x)) 2)
The expression (lambda x (cons x x)) produces a function; the function puts all arguments into a list x; the function returns (cons x x).
Your expression calls the above function with an argument of 2. In the function x is (2) (a list of all the arguments). The function (cons '(2) '(2)) returns ((2) 2)
(cons x x)
is not the same as
(list x x)
since it produces dotted pairs, e.g. (cons 2 2) returns (2 . 2).
But when the right side of a dotted pair is a list, the whole thing is a list. (lambda x expr) takes an arbitrary number of arguments, puts them in a list x, so that's (2) here. The dotted pair ((2) . (2)) is printed as ((2) 2) per Lisp conventions.
Yep, you've ran off the deep end of scheme.
You've stublled across the notation that allows you to write a function that accepts zero or more arguments. (any number really)
(define add-nums
(lambda x
(if (null? x)
0
(+ (car x) (apply add-nums (cdr x))))))
(add-nums 1 87 203 87 2 4 5)
;Value: 389
If you just want one argument you need to enclose x in a set of parenthesis.
And you want to use
(list x x)
or
(cons x (cons x '())
as the function body, as a properly formed list will have an empty list in the tail position.
You probably wanted to write:
((lambda (x) (cons x x)) 2)
(note the brackets around x).

Using Setf Syntax in a Loop

What is the proper way to do a setf for the variable below?
CG-USER(279): (defun LETTERSEARCH (string1 string2)
(let ((newString nil))
(let ((letterSearchOn nil))
(loop for i from 0 below (length string1)
always
(setf (letterSearchOn (char string1 i))
(print letterSearchOn))))))
LETTERSEARCH
CG-USER(280): (stringprod "abc" "abc")
NIL
Error: `(SETF LETTERSEARCHON)' is not fbound
[condition type: UNDEFINED-FUNCTION]
CG-USER(281):
That should be (setf letterSearchOn (char string1 i)).
The way (setf) works in Common Lisp is really cool; it's a macro, but the macro expander which is used depends on the argument. For example:
(defparameter a (list 1))
(setf (car a) 2)
a ; => (2)
(setf (cdr a) (list 3))
a ; => (2 3)
Does that seem strange? (car a) is a function... how can you "set" it to a new value??? The answer is that if the first argument to (setf) is a list which starts with car, it expands to code which sets the car of a cons cell. If the first argument is a list which starts with cdr, it expands to code which sets the cdr of a cons cell. And so on for vectors, hash tables, etc. etc.
You can even define your own (setf) macros, which can expand the range of things which (setf) knows how to set. In this case, you are passing (letterSearchOn (char string1 i)), so it thinks that you want it to use a special letterSearchOn macro expander, but no such setf macro expander has been defined.