Mixing sound files of different size - iphone

I want to mix audio files of different size into a one single .wav file without clipping any file.,i.e. The resulting file size should be equal to the largest sized file of all.
There is a sample through which we can mix files of same size
[(http://www.modejong.com/iOS/#ex4 )(Example 4)].
I modified the code to get the mixed file as a .wav file.
But I am not able to understand that how to modify this code for unequal sized files.
If someone can help me out with some code snippet,i'll be really thankful.

It should be as easy as sending all the files to the mixer simultaneously. When any single file gets to the end, just treat it as if the remainder is filled with zeroes. When all files get to the end, you are done.
Note that the example code says it returns an error if there would be clipping (the sum of the waves is greater than the max representable value.). This condition is more likely if you are mixing multiple inputs. The best way around it is to create some "headroom" in the input waves. You can do either do this in preprocessing, by ensuring that each wave's volume is no more than X% of maximum. (~80-90%, depending on number of inputs.). The other way is to do it dynamically in the mixer code by multiplying each sample by some value <1.0 as you add it to the mix.
If you are selecting the waves to mix at runtime and failure due to clipping is unacceptable, you will need to modify the sample code to pin the values at max/min instead of returning an error. Don't just let them overflow or you will get noisy artifacts.
(Clipping creates artifacts as well, but when you haven't created enough headroom before mixing, it is definitely preferrable to overflow. It is a more familiar-sounding type of distortion, similar to what you get when you overdrive your speakers. See this wikipedia article on clipping:
Clipping is preferable to the alternative in digital systems—wrapping—which occurs if the digital hardware is allowed to "overflow", ignoring the most significant bits of the magnitude, and sometimes even the sign of the sample value, resulting in gross distortion of the signal.

How I'd do it:
Much like the mix_buffers function that you linked to, but pass in 2 parameters for mixbufferNumSamples. Iterate over the whole of the longer of the two buffers. When the index has gone beyond the end of the shorter buffer, simply set the sample from that buffer to 0 for the rest of the function.
If you must avoid clipping and do it in real-time and you know nothing else about the two sounds, you must provide enough headroom. The simplest method is by halving each of the samples before mixing:
mixed = s1/2 + s2/2;
This ensures that the resultant mixed sample won't overflow an int16_t. It will have the side effect of making everything quieter though.
If you can run it offline, you can calculate a scale factor to apply to both waveforms which will keep the peaks when summed below the maximum allowed value.
Or you could mix them all at full volume to an int32_t buffer, keeping track of the largest (magnitude) mixed sample and then go back through the buffer multiplying each sample by a scale factor which will make that extreme sample just reach the +32767/-32768 limits.

Related

Image based steganography that survives resizing?

I am using a startech capture card for capturing video from the source machine..I have encoded that video using matlab so every frame of that video will contain that marker...I run that video on the source computer(HDMI out) connected via HDMI to my computer(HDMI IN) once i capture the frame as bitmap(1920*1080) i re-size it to 1280*720 i send it for processing , the processing code checks every pixel for that marker.
The issue is my capture card is able to capture only at 1920*1080 where as the video is of 1280*720. Hence in order to retain the marker I am down scaling the frame captured to 1280*720 which in turn alters the entire pixel array I believe and hence I am not able to retain marker I fed in to the video.
In that capturing process the image is going through up-scaling which in turn changes the pixel values.
I am going through few research papers on Steganography but it hasn't helped so far. Is there any technique that could survive image resizing and I could retain pixel values.
Any suggestions or pointers will be really appreciated.
My advice is to start with searching for an alternative software that doesn't rescale, compress or otherwise modify any extracted frames before handing them to your control. It may save you many headaches and days worth of time. If you insist on implementing, or are forced to implement a steganography algorithm that survives resizing, keep on reading.
I can't provide a specific solution because there are many ways this can be (possibly) achieved and they are complex. However, I'll describe the ingredients a solution will most likely involve and your limitations with such an approach.
Resizing a cover image is considered an attack as an attempt to destroy the secret. Other such examples include lossy compression, noise, cropping, rotation and smoothing. Robust steganography is the medicine for that, but it isn't all powerful; it may be able to provide resistance to only specific types attacks and/or only small scale attacks at that. You need to find or design an algorithm that suits your needs.
For example, let's take a simple pixel lsb substitution algorithm. It modifies the lsb of a pixel to be the same as the bit you want to embed. Now consider an attack where someone randomly applies a pixel change of -1 25% of the time, 0 50% of the time and +1 25% of the time. Effectively, half of the time it will flip your embedded bit, but you don't know which ones are affected. This makes extraction impossible. However, you can alter your embedding algorithm to be resistant against this type of attack. You know the absolute value of the maximum change is 1. If you embed your secret bit, s, in the 3rd lsb, along with setting the last 2 lsbs to 01, you guarantee to survive the attack. More specifically, you get xxxxxs01 in binary for 8 bits.
Let's examine what we have sacrificed in order to survive such an attack. Assuming our embedding bit and the lsbs that can be modified all have uniform probabilities, the probability of changing the original pixel value with the simple algorithm is
change | probability
-------+------------
0 | 1/2
1 | 1/2
and with the more robust algorithm
change | probability
-------+------------
0 | 1/8
1 | 1/4
2 | 3/16
3 | 1/8
4 | 1/8
5 | 1/8
6 | 1/16
That's going to affect our PSNR quite a bit if we embed a lot of information. But we can do a bit better than that if we employ the optimal pixel adjustment method. This algorithm minimises the Euclidean distance between the original value and the modified one. In simpler terms, it minimises the absolute difference. For example, assume you have a pixel with binary value xxxx0111 and you want to embed a 0. This means you have to make the last 3 lsbs 001. With a naive substitution, you get xxxx0001, which has a distance of 6 from the original value. But xxx1001 has only 2.
Now, let's assume that the attack can induce a change of 0 33.3% of the time, 1 33.3% of the time and 2 33.3%. Of that last 33.3%, half the time it will be -2 and the other half it will be +2. The algorithm we described above can actually survive a +2 modification, but not a -2. So 16.6% of the time our embedded bit will be flipped. But now we introduce error correcting codes. If we apply such a code that has the potential to correct on average 1 error every 6 bits, we are capable of successfully extracting our secret despite the attack altering it.
Error correction generally works by adding some sort of redundancy. So even if part of our bit stream is destroyed, we can refer to that redundancy to retrieve the original information. Naturally, the more redundancy you add, the better the error correction rate, but you may have to double the redundancy just to improve the correction rate by a few percent (just arbitrary numbers here).
Let's appreciate here how much information you can hide in a 1280x720 (grayscale) image. 1 bit per pixel, for 8 bits per letter, for ~5 letters per word and you can hide 20k words. That's a respectable portion of an average novel. It's enough to hide your stellar Masters dissertation, which you even published, in your graduation photo. But with a 4 bit redundancy per 1 bit of actual information, you're only looking at hiding that boring essay you wrote once, which didn't even get the best mark in the class.
There are other ways you can embed your information. For example, specific methods in the frequency domain can be more resistant to pixel modifications. The downside of such methods are an increased complexity in coding the algorithm and reduced hiding capacity. That's because some frequency coefficients are resistant to changes but make embedding modifications easily detectable, then there are those that are fragile to changes but they are hard to detect and some lie in the middle of all of this. So you compromise and use only a fraction of the available coefficients. Popular frequency transforms used in steganography are the Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT).
In summary, if you want a robust algorithm, the consistent themes that emerge are sacrificing capacity and applying stronger distortions to your cover medium. There have been quite a few studies done on robust steganography for watermarks. That's because you want your watermark to survive any attacks so you can prove ownership of the content and watermarks tend to be very small, e.g. a 64x64 binary image icon (that's only 4096 bits). Even then, some algorithms are robust enough to recover the watermark almost intact, say 70-90%, so that it's still comparable to the original watermark. In some case, this is considered good enough. You'd require an even more robust algorithm (bigger sacrifices) if you want a lossless retrieval of your secret data 100% of the time.
If you want such an algorithm, you want to comb the literature for one and test any possible candidates to see if they meet your needs. But don't expect anything that takes only 15 lines to code and 10 minutes of reading to understand. Here is a paper that looks like a good start: Mali et al. (2012). Robust and secured image-adaptive data hiding. Digital Signal Processing, 22(2), 314-323. Unfortunately, the paper is not open domain and you will either need a subscription, or academic access in order to read it. But then again, that's true for most of the papers out there. You said you've read some papers already and in previous questions you've stated you're working on a college project, so access for you may be likely.
For this specific paper, table 4 shows the results of resisting a resizing attack and section 4.4 discusses the results. They don't explicitly state 100% recovery, but only a faithful reproduction. Also notice that the attacks have been of the scale 5-20% resizing and that only allows for a few thousand embedding bits. Finally, the resizing method (nearest neighbour, cubic, etc) matters a lot in surviving the attack.
I have designed and implemented ChromaShift: https://www.facebook.com/ChromaShift/
If done right, steganography can resiliently (i.e. robustly) encode identifying information (e.g. downloader user id) in the image medium while keeping it essentially perceptually unmodified. Compared to watermarks, steganography is a subtler yet more powerful way of encoding information in images.
The information is dynamically multiplexed into the Cb Cr fabric of the JPEG by chroma-shifting pixels to a configurable small bump value. As the human eye is more sensitive to luminance changes than to chrominance changes, chroma-shifting is virtually imperceptible while providing a way to encode arbitrary information in the image. The ChromaShift engine does both watermarking and pure steganography. Both DRM subsystems are configurable via a rich set of of options.
The solution is developed in C, for the Linux platform, and uses SWIG to compile into a PHP loadable module. It can therefore be accessed by PHP scripts while providing the speed of a natively compiled program.

Performing Intra-frame Prediction in Matlab

I am trying to implement a hybrid video coding framework which is used in the H.264/MPEG-4 video standard for which I need to perform 'Intra-frame Prediction' and 'Inter Prediction' (which in other words is motion estimation) of a set of 30 frames for video processing in Matlab. I am working with Mother-daughter frames.
Please note that this post is very similar to my previously asked question but this one is solely based on Matlab computation.
Edit:
I am trying to implement the framework shown below:
My question is how to perform horizontal coding method which is one of the nine methods of Intra Coding framework? How are the pixels sampled?
What I find confusing is that Intra Prediction needs two inputs which are the 8x8 blocks of input frame and the 8x8 blocks of reconstructed frame. But what happens when coding the very first block of the input frame since there will be no reconstructed pixels to perform horizontal coding?
In the image above the whole system is a closed loop where do you start?
END:
Question 1: Is intra-predicted image only for the first image (I-frame) of the sequence or does it need to be computed for all 30 frames?
I know that there are five intra coding modes which are horizontal, vertical, DC, Left-up to right-down and right-up to left-down.
Question 2: How do I actually get around comparing the reconstructed frame and the anchor frame (original current frame)?
Question 3: Why do I need a search area? Can the individual 8x8 blocks be used as a search area done one pixel at a time?
I know that pixels from reconstructed block are used for comparing, but is it done one pixel at a time within the search area? If so wouldn't that be too time consuming if 30 frames are to be processed?
Continuing on from our previous post, let's answer one question at a time.
Question #1
Usually, you use one I-frame and denote this as the reference frame. Once you use this, for each 8 x 8 block that's in your reference frame, you take a look at the next frame and figure out where this 8 x 8 block best moved in this next frame. You describe this displacement as a motion vector and you construct a P-frame that consists of this information. This tells you where the 8 x 8 block from the reference frame best moved in this frame.
Now, the next question you may be asking is how many frames is it going to take before we decide to use another reference frame? This is entirely up to you, and you set this up in your decoder settings. For digital broadcast and DVD storage, it is recommended that you generate an I-frame every 0.5 seconds or so. Assuming 24 frames per second, this means that you would need to generate an I-frame every 12 frames. This Wikipedia article was where I got this reference.
As for the intra-coding modes, these tell the encoder in what direction you should look for when trying to find the best matching block. Actually, take a look at this paper that talks about the different prediction modes. Take a look at Figure 1, and it provides a very nice summary of the various prediction modes. In fact, there are nine all together. Also take a look at this Wikipedia article to get better pictorial representations of the different mechanisms of prediction as well. In order to get the best accuracy, they also do subpixel estimation at a 1/4 pixel accuracy by doing bilinear interpolation in between the pixels.
I'm not sure whether or not you need to implement just motion compensation with P-frames, or if you need B frames as well. I'm going to assume you'll be needing both. As such, take a look at this diagram I pulled off of Wikipedia:
Source: Wikipedia
This is a very common sequence for encoding frames in your video. It follows the format of:
IBBPBBPBBI...
There is a time axis at the bottom that tells you the sequence of frames that get sent to the decoder once you encode the frames. I-frames need to be encoded first, followed by P-frames, and then B-frames. A typical sequence of frames that are encoded in between the I-frames follow this format that you see in the figure. The chunk of frames in between I-frames is what is known as a Group of Pictures (GOP). If you remember from our previous post, B-frames use information from ahead and from behind its current position. As such, to summarize the timeline, this is what is usually done on the encoder side:
The I-frame is encoded, and then is used to predict the first P-frame
The first I-frame and the first P-frame are then used to predict the first and second B-frame that are in between these frames
The second P-frame is predicted using the first P-frame, and the third and fourth B-frames are created using information between the first P-frame and the second P-frame
Finally, the last frame in the GOP is an I-frame. This is encoded, then information between the second P-frame and the second I-frame (last frame) are used to generate the fifth and sixth B-frames
Therefore, what needs to happen is that you send I-frames first, then the P-frames, and then the B-frames after. The decoder has to wait for the P-frames before the B-frames can be reconstructed. However, this method of decoding is more robust because:
It minimizes the problem of possible uncovered areas.
P-frames and B-frames need less data than I-frames, so less data is transmitted.
However, B-frames will require more motion vectors, and so there will be some higher bit rates here.
Question #2
Honestly, what I have seen people do is do a simple Sum-of-Squared Differences between one frame and another to compare similarity. You take your colour components (whether it be RGB, YUV, etc.) for each pixel from one frame in one position, subtract these with the colour components in the same spatial location in the other frame, square each component and add them all together. You accumulate all of these differences for every location in your frame. The higher the value, the more dissimilar this is between the one frame and the next.
Another measure that is well known is called Structural Similarity where some statistical measures such as mean and variance are used to assess how similar two frames are.
There are a whole bunch of other video quality metrics that are used, and there are advantages and disadvantages when using any of them. Rather than telling you which one to use, I defer you to this Wikipedia article so you can decide which one to use for yourself depending on your application. This Wikipedia article describes a whole bunch of similarity and video quality metrics, and the buck doesn't stop there. There is still on-going research on what numerical measures best capture the similarity and quality between two frames.
Question #3
When searching for the best block from an I-frame that has moved in a P-frame, you need to restrict the searching to a finite sized windowed area from the location of this I-frame block because you don't want the encoder to search all of the locations in the frame. This would simply be too computationally intensive and would thus make your decoder slow. I actually mentioned this in our previous post.
Using one pixel to search for another pixel in the next frame is a very bad idea because of the minuscule amount of information that this single pixel contains. The reason why you compare blocks at a time when doing motion estimation is because usually, blocks of pixels have a lot of variation inside the blocks which are unique to the block itself. If we can find this same variation in another area in your next frame, then this is a very good candidate that this group of pixels moved together to this new block. Remember, we're assuming that the frame rate for video is adequately high enough so that most of the pixels in your frame either don't move at all, or move very slowly. Using blocks allows the matching to be somewhat more accurate.
Blocks are compared at a time, and the way blocks are compared is using one of those video similarity measures that I talked about in the Wikipedia article I referenced. You are certainly correct in that doing this for 30 frames would indeed be slow, but there are implementations that exist that are highly optimized to do the encoding very fast. One good example is FFMPEG. In fact, I use FFMPEG at work all the time. FFMPEG is highly customizable, and you can create an encoder / decoder that takes advantage of the architecture of your system. I have it set up so that encoding / decoding uses all of the cores on my machine (8 in total).
This doesn't really answer the actual block comparison itself. Actually, the H.264 standard has a bunch of prediction mechanisms in place so that you're not looking at all of the blocks in an I-frame to predict the next P-frame (or one P-frame to the next P-frame, etc.). This alludes to the different prediction modes in the Wikipedia article and in the paper that I referred you to. The encoder is intelligent enough to detect a pattern, and then generalize an area of your image where it believes that this will exhibit the same amount of motion. It skips this area and moves onto the next.
This assignment (in my opinion) is way too broad. There are so many intricacies in doing motion prediction / compensation that there is a reason why most video engineers already use available tools to do the work for us. Why invent the wheel when it has already been perfected, right?
I hope this has adequately answered your questions. I believe that I have given you more questions than answers really, but I hope that this is enough for you to delve into this topic further to achieve your overall goal.
Good luck!
Question 1: Is intra-predicted image only for the first image (I-frame) of the sequence or does it need to be computed for all 30 frames?
I know that there are five intra coding modes which are horizontal, vertical, DC, Left-up to right-down and right-up to left-down.
Answer: intra prediction need not be used for all the frames.
Question 2: How do I actually get around comparing the reconstructed frame and the anchor frame (original current frame)?
Question 3: Why do I need a search area? Can the individual 8x8 blocks be used as a search area done one pixel at a time?
Answer: we need to use the block matching algo for finding the motion vector. so search area is reqd. Normally size of the search area should be larger than the block size. larger the search area, more the computation and higher the accuracy.

Modifying Every Column of Every Frame of a Video

I would like to write a program that will take a video as input, create an output video file, and will (starting after a certain number of frames), begin writing modified frames to the output file frame by frame.
The modification will need to work on individual columns of pixels, one at a time.
Viewing this as a problem to be solved in Matlab, with each frame as a matrix... I cannot think of a way to make this computationally tractable.
I am hoping that someone might be able to offer suggestions on how I might begin to approach this problem.
Here are some details, in case it helps:
I'm interested in transforming a video in the following way:
Viewing a video as a sequence of (MxN) matrices, where each matrix is called a frame:
Take an input video and create new file for output video
For each column V in frame(i) of output video, replace this column by
column V in frame(i + V - N) of the input video.
For example: the new right-most column (column N) of frame(i) will contain column N of frame(i + N - N) = frame(i)... so that there is no replacement. The new 2nd to right-most column (column N-1) of frame(i) will contain column N-1 of [frame(i+N-1-N) = frame(i-1)].
In order to make this work (i.e. in order to not run out of previous frames), this column replacement will start on frame N of the video.
So... This is basically a variable delay running from left to right?
As you say, you do have two ways of going about this:
a) Use lots of memory
b) Use lots of file access
Your memory requirements increase as a cube power of the size of the video - the size of each frame increases, AND the number of previous frames you need to have open or reference increases. I.e. doubling frame size will require 4x memory per frame, and 2x number of frames open.
I think that Matlab's memory management will probably make this hard to do for e.g. a 1080p video, unless you have a pretty high-end workstation. Do you? A quick test-read of a 720p video gives 1.2MB per frame. 1080p would then be approx 5MB per frame, and you would need to have 1920 frames open: approx 10GB needed.
It will be more efficient to load frames individually, if you don't have enough memory - otherwise you will be using pagefiles and that'll be slower than loading frame-by-frame.
Your basic code reading each frame individually could be something like this:
VR=VideoReader('My_Input_Video_Filename.avi');
VW=VideoWriter('My_Output_Video_Filename.avi','MPEG-4');
NumInFrames=get(VR,'NumberOfFrames');
InWidth=get(VR,'Width');
InHeight=get(VR,'Height');
OutFrame=zeros(InHeight,InWidth,3,'uint8');
for (frame=InWidth+1:NumInFrames)
for (subindex=1:InWidth)
CData=read(VR,frame-subindex);
OutFrame(:,subindex,:)=CData(:,subindex,:);
end
writeVideo(VW,OutFrame);
end
This will probably be slow, and I haven't fully checked it works, but it does use a minimum amount of memory.
The best case for minimum file acess is probably using a ring buffer arrangement and the maximum amount of memory, which would look something like this:
VR=VideoReader('My_Input_Video_Filename.avi');
VW=VideoWriter('My_Output_Video_Filename.avi','MPEG-4');
NumInFrames=get(VR,'NumberOfFrames');
InWidth=get(VR,'Width');
InHeight=get(VR,'Height');
CDatas=read(VR,InWidth);
BufferIndex=1;
OutFrame=zeros(InHeight,InWidth,3,'uint8');
for (frame=InWidth+1:NumInFrames)
CDatas(:,:,:,BufferIndex)=read(VR,frame);
tempindices=circshift(1:InWidth,[1,-1*BufferIndex]);
for (subindex=1:InWidth)
OutFrame(:,subindex,:)=CDatas(:,subindex,:,tempindices(subindex));
end
writeVideo(VW,OutFrame);
BufferIndex=mod(BufferIndex+1,InWidth);
end
The buffer indexing code may need some tweaking there, but something along those lines would be a minimum file access, maximum memory use solution.
For a given PC with more or less memory, you can implement somewhere in between these two as a solution (i.e. reading somewhere between 1 and all frames per iteration) as a best-case.
Matlab will be quite slow for this kind of task, but it will be a good way of getting your algorithm right and working out indexing bugs and that kind of thing. Converting to a compiled language would give a good increase in speed - I converted a Matlab script to a C# program in a couple of hours, and gave a 10x increase in speed over an optimised script where the time taken was in the number of file reads.
Hope this helps, good luck!

Where do I find the memory requirements of a MATLAB function?

I have a 3D array of values (0 or 1), which is very large (approx 2300x2300x11). I want to fit a surface to these values using for example interp3, but when I try MATLAB runs out of memory. Thus, I've decided to reduce the size of my array enough for MATLAB to accomodate it in memory.
Now, the smaller I make the reduced array, the worse my results will be (the surface fitting is part of a measurement process with high precision requirements), so I want to reduce the array as little as possible.
Is there any way to determine on beforehand how much memory a certain array size will demand and how much memory is available, and then use this information to resize the array enough to avoid out of memory exceptions, but not more?
I don't know the answer to this, but I wonder if you can have your cake and eat it, too.
If your data set is too big, why not do a piecewise fit? Do it in chunks rather than omitting data points.
Or be smarter about how you omit data points. You want them in areas of high curvature - where your data is changing fastest. Leave out points in areas far away from the action, where nothing interesting is happening. You might have to do a fit, look at the surface, add and remove more points and try again.
It might an iterative process, but I'll bet you'll be able to get a nice fit with a little luck and effort.
You can look at the maximum array sizes that are supported on different platforms. In general, if you have a PxQxR sized 3D array of doubles, then the size of your array in bytes is P*Q*R*8. For your matrix, the size is ~ 444 MB. You can also try reducing it to a single, using single(A). single uses 4 bytes per element and you can reduce the size of your array by a factor 2.
I haven't really poked into the inner workings of interp3, but the exact memory requirements will depend on the interpolation option you choose. So, you can first try to convert it to single and see if it works. If not, try with 80% (90%) of the number of rows and columns. This way you have a good chunk of the original array, but the memory requirement is only 64% (81%) of the original.
If that doesn't help, duffymo's suggestion is what you should be looking into.

trainning neural network

I have a picture.1200*1175 pixel.I want to train a net(mlp or hopfield) to learn a specific part of it(201*111pixel) to save its weight to use in a new net(with the same previous feature)only without train it to find that specific part.now there are this questions :what kind of nets is useful;mlp or hopfield,if mlp;the number of hidden layers;the trainlm function is unuseful because "out of memory" error.I convert the picture to a binary image,is it useful?
What exactly do you need the solution to do? Find an object with an image (like "Where's Waldo"?). Will the target object always be the same size and orientation? Might it look different because of lighting changes?
If you just need to find a fixed pattern of pixels within a larger image, I suggest using a straightforward correlation measure, such as crosscorrelation to find it efficiently.
If you need to contend with any of the issues mentioned above, then there are two basic solutions: 1. Build a model using examples of the object in different poses, scalings, etc. so that the model will recognize any of them, or 2. Develop a way to normalize the patch of pixels being examined, to minimize the effect of those distortions (like Hu's invariant moments). If nothing else, yuo'll want to perform some sort of data reduction to get the number of inputs down. Technically, you could also try a model which is invariant to rotations, etc., but I don't know how well those work. I suspect that they are more tempermental than traditional approaches.
I found AdaBoost to be helpful in picking out only important bits of an image. That, and resizing the image to something very tiny (like 40x30) using a Gaussian filter will speed it up and put weight on more of an area of the photo rather than on a tiny insignificant pixel.