NSNotification addObserver:someOtherClass - iphone

I need to pass a message up to a controlling class (which creates an instance of the class which will be sending the message) So, I cannot directly reference the class name in my file, without either making it a Global (which is ridiculous to do if "NSNotification" advertises to be able to pass all kinds of messages, regardless of where / what class they are.
So without further ado...
(calling from Say ClassB)
ClassA creates instance of ClassB
Now in ClassB, I need to pass messages regarding button presses back up to ClassA
(insdie ClassB)
- (void)viewDidLoad
{
[[NSNotificationCenter defaultCenter] addObserver:ClassA
selector:#selector(doLoginAction)
name:#"SomeButton"
object:nil];
[super viewDidLoad];
}
This will NOT compile, even when I include, sorry, "#import "ClassA.h"
Now if I do something stupid like,
ClassA *classa = [[ClassA alloc]init];
and then use this Newly created instance of classa in addObserver:classa it will compile, but as I thought, will do absolutely nothing... (I knew that, but surprisingly this kind of code is prevalent in Iphone programming books...) So I tried it anyway.
But if I put this function in ClassA and use addObserver:ClassB
it will get called, but will cause a stack dump unrecognized selector sent to instance
or use addObserver:self.
I am tempted to delete Xcode and go back to vim and use a good old "C" callback...

So, if I get it right, you have a ClassA which creates instances of ClassB. Those instances, in turn, should send notifications directly to ClassA without knowing anything about it.
If that is correct, then NSNotificationCenter is exactly what you need.
In ClassA implementation add an initialialize method like this:
#implementation ClassA
+ (void)initialize
{
[[NSNotificationCenter defaultCenter]
addObserver:self
selector:#selector(YourSelector:)
name:#"YourNotificationName"
object:nil];
}
+ (void)YourSelector:(NSNotification *)notification
{
NSDictionary *userInfo = [notification userInfo];
// ...
}
// ...
#end
Then, instances of ClassB should post their notifications using only its name:
#implementation ClassB
- (void)postNotification
{
NSDictionary *userInfo = ...; // may be nil
[[NSNotificationCenter defaultCenter]
postNotificationName:#"YourNotificationName"
// the same name is used in the `addObserver` call
// in the previous code snippet
object:nil
userInfo:userInfo];
}
// ...
#end
To sum it all up, you do not need to know anything about the receiver of notifications if you are using NSNotificationCenter. In fact, you may subscribe as many objects as you like to receive the same notification, and each of them will call its appropriate method (specified in addObserver) upon receiving the notification object.
Please remember that in the case when you add a class instance as an observer, rather than the class object itself, you should call [[NSNotificationCenter defaultCenter] removeObserver:self] in that instance's dealloc method.

I see a couple of problems here.
First you need to stop trying to use classes and instances interchangeably. Until you have a reasonable mental model of what your classes and instances represent and what they are responsible for you're going to have all sorts of confusion around when to use which one and OOP in general.
NSNotificationCenter allows you to register a specific instance of a class, a single object, as an observer of particular notifications. You need to be aware of, and have a reference to, the observing object in order to register it as an observer.
Secondly you need to consider what each of your classes, and therefor their instantiated objects are responsible for. What they should know, what they do not need to know, and how they can communicate.
Let's assume you create ObjectA as an instance of ClassA and it creates ObjectB which is an instance of ClassB. Now ObjectA is aware of ObjectB, after all A just created B so it is easy for A to have a reference to B. ObjectB is not yet aware of ObjectA; B was created but it need not know by which object or even what class that object was an instance of. If you want ObjectB to be able to communicate with ObjectA you have a couple of options.
Delegation: ObjectA sets a property on ObjectB to point back to ObjectA, now B can send messages to A directly. Now your two objects are coupled together which can be both useful and problematic.
Notifications: ObjectB can post notifications, ObjectA can observe notifications. B does not need to know that A is observing those notifications and A does not need to know that the notifications originated with B (though it could). These objects are very loosely coupled and you could change many things about your application without them ever being aware of it.
Importantly, if ObjectA is to listen for notifications then it is A's responsibility to add itself as an observer. Since B is not aware of A there's no way B can make A an observer. A's creator could since that object would have a reference to A but A's children cannot unless they were given some reference to A.
Looks like Alex chimed in with an excellent answer so hopefully this will all be useful.

Related

How to debug KVO

In my program I use KVO manually to observe changes to values of object properties. I receive an EXC_BAD_ACCESS signal at the following line of code inside a custom setter:
[self willChangeValueForKey:#"mykey"];
The weird thing is that this happens when a factory method calls the custom setter and there should not be any observers around. I do not know how to debug this situation.
Update: The way to list all registered observers is observationInfo. It turned out that there was indeed an object listed that points to an invalid address. However, I have no idea at all how it got there.
Update 2: Apparently, the same object and method callback can be registered several times for a given object - resulting in identical entries in the observed object's observationInfo. When removing the registration only one of these entries is removed. This behavior is a little counter-intuitive (and it certainly is a bug in my program to add multiple entries at all), but this does not explain how spurious observers can mysteriously show up in freshly allocated objects (unless there is some caching/reuse going on that I am unaware of).
Modified question: How can I figure out WHERE and WHEN an object got registered as an observer?
Update 3: Specific sample code.
ContentObj is a class that has a dictionary as a property named mykey. It overrides:
+ (BOOL)automaticallyNotifiesObserversForKey:(NSString *)theKey {
BOOL automatic = NO;
if ([theKey isEqualToString:#"mykey"]) {
automatic = NO;
} else {
automatic=[super automaticallyNotifiesObserversForKey:theKey];
}
return automatic;
}
A couple of properties have getters and setters as follows:
- (CGFloat)value {
return [[[self mykey] objectForKey:#"value"] floatValue];
}
- (void)setValue:(CGFloat)aValue {
[self willChangeValueForKey:#"mykey"];
[[self mykey] setObject:[NSNumber numberWithFloat:aValue]
forKey:#"value"];
[self didChangeValueForKey:#"mykey"];
}
The container class has a property contents of class NSMutableArray which holds instances of class ContentObj. It has a couple of methods that manually handle registrations:
+ (BOOL)automaticallyNotifiesObserversForKey:(NSString *)theKey {
BOOL automatic = NO;
if ([theKey isEqualToString:#"contents"]) {
automatic = NO;
} else {
automatic=[super automaticallyNotifiesObserversForKey:theKey];
}
return automatic;
}
- (void)observeContent:(ContentObj *)cObj {
[cObj addObserver:self
forKeyPath:#"mykey"
options:0
context:NULL];
}
- (void)removeObserveContent:(ContentObj *)cObj {
[cObj removeObserver:self
forKeyPath:#"mykey"];
}
- (void)observeValueForKeyPath:(NSString *)keyPath
ofObject:(id)object
change:(NSDictionary *)change
context:(void *)context {
if (([keyPath isEqualToString:#"mykey"]) &&
([object isKindOfClass:[ContentObj class]])) {
[self willChangeValueForKey:#"contents"];
[self didChangeValueForKey:#"contents"];
}
}
There are several methods in the container class that modify contents. They look as follows:
- (void)addContent:(ContentObj *)cObj {
[self willChangeValueForKey:#"contents"];
[self observeDatum:cObj];
[[self contents] addObject:cObj];
[self didChangeValueForKey:#"contents"];
}
And a couple of others that provide similar functionality to the array. They all work by adding/removing themselves as observers. Obviously, anything that results in multiple registrations is a bug and could sit somewhere hidden in these methods.
My question targets strategies on how to debug this kind of situation. Alternatively, please feel free to provide an alternative strategy for implementing this kind of notification/observer pattern.
Update 4: I found the bug using a mixture of breakpoints, NSLogs, code reviews and sweating. I did not use the context in KVO, although this is definitely another useful suggestion. It was indeed a wrong double registration that - for reasons beyond my comprehension - resulted in the observed behavior.
The implementation including [self willChange...]; [self didChange...] works as described (on iOS 5), although it is far from beautiful. The issue is that as NSArray is not KVO-compliant there is no way to talk about changes to its contents. I had also thought about notifications as suggested by Mike Ash, but I decided to go with KVO as this seemed like a more Cocoa-ish mechanism to do the work. This was arguably not the best of decisions ...
Yes, calling -addObserver: twice will result in two registrations. A class Foo and some subclass of Foo, Bar, may both (legitimately) register for the same notification, but with different contexts (always include the context, always check the context in -observeValueForKeyPath and always call super in -observeValueForKeyPath).
This means that an instance of Bar will register twice, and this is correct.
However, you almost certainly don't want to register the same object/keypath/context more than once accidentally, and as #wbyoung says overriding -addObserver:forKeyPath:options:context: should help you make sure this doesn't happen. If nesessary keeping track of observers/keypath/context in an array and making sure they are unique.
Mike Ash has some interesting thoughts and code on his blog about using contexts. He is right about it being broken but in practise KVO is perfectly useable.
That is, when you use it to do something it is meant todo. It used to be that you absolutely could not do something like this..
[self willChangeValueForKey:#"contents"];
[self didChangeValueForKey:#"contents"];
because it's a lie. The value of 'contents' when you call -willChange.. must be a different value from when you call -didChange... The KVO mechanism will call -valueForKey:#"contents" in both -willChangeValueForKey and -didChangeValueForKey to verify the value has changed. This obviously won't work with an array as no matter how you modify the contents you still have the same object. Now i don't know if this is still the case (a web search turned up nothing) but note that -willChangeValueForKey, -didChangeValueForKey are not the correct way to handle manual kvo of a collection. For that Apple provides alternative methods:-
– willChange:valuesAtIndexes:forKey:
– didChange:valuesAtIndexes:forKey:
– willChangeValueForKey:withSetMutation:usingObjects:
– didChangeValueForKey:withSetMutation:usingObjects:
It may not still be true that the value must change, but if it is, your scheme is not going to work.
What i would do is have one notification for modifications to your collection. And a different notification for modification of items in that collection. i.e. at the moment you are trying to trigger notifications for #"contents" when instead you could have #"contents" and #"propertiesOfContents". You would need to observe two keypaths but you can use automatic kvo instead of manually triggering the notifications. (Using automatic kvo will ensure that the correct versions of -willChange.. -didChange.. are called)
For automatic kvo of an array take a look at (no NSArrayController needed) :-
Key-Value-Observing a to-many relationship in Cocoa
Then each time an item is added to the collection, observe the properties you need (as you are doing now) and when they change flip a value for self.propertiesOfContents. (ok as i read that back it doesn't necessarily sound less hacky than your solution but i still believe it may behave better).
In response to your modified question, try overriding addObserver:forKeyPath:options:context: in your custom class and setting a breakpoint on it. Alternatively, you can just set a symbolic breakpoint on -[NSObject addObserver:forKeyPath:options:context:], but that will probably get hit a lot.

How to Transfer Data Via KVO Notifications?

so I am able to successfully have another class of mine be notified via KVO notification when a class instance value changes, but I have no idea of how I would go about transferring data between the two objects. I am aware that it is possible to do such things via the context: parameter, however Apple's documentation fails to indicate how to go about doing that.
I am aware that you place a pointer to an object as the context parameter in the addObserver:forKeyPath:options:context: message, but how does the object that is being observed "see" that object that is pointed to so it can make modifications accordingly?
Thanks!
The context argument is not meant as a data-transfer device, it just helps the observing class to distinguish different observations from each other. I’m not sure if you understand KVO right. KVO is used when you want to know about updates to a certain property. Upon receiving the notification you usually do something with the old/new property value:
- (void) observeValueForKeyPath: (NSString*) keyPath ofObject: (id) sender
change: (NSDictionary*) change context: (void*) context
{
id newValue = [change objectForKey:NSKeyValueChangeNewKey];
NSLog(#"New property value: %#.", newValue);
}
In this use case it does not make much sense to talk about “transferring data” between the two parties. If you want to get some extra data in addition to the property changes, you can easily expose that data as a property on the class being observed. Or forget about KVO and trigger a regular NSNotification with all the required data passed as the user info object:
NSDictionary *info = [NSDictionary dictionaryWithObjectsAndKeys:
foo, #"foo", bar, #"bar", nil];
[[NSNotificationCenter defaultCenter] postNotificationName:#"Foo"
object:self userInfo:info];
So I got it working like so...
I have an object (obj A) that needs to observe another object (obj B) and implements the following function: observeValueForKeyPath:ofObject:change:context:
Obj B calls the following in its init function:
[self addObserver:[<some singleton class> sharedManager] forKeyPath:#"someVar" options:(NSKeyValueObservingOptionNew) context:self];
Of course the observer class does not need to be a singleton class, but of course it is very convenient. I passed in the object being observed as the context and that allowed obj A to access all ivars for obj B in the observeValueForKeyPath:ofObject:change:context: function.
As I discovered, different background threads aren't used for KVO notifications, so I am reverting back to using protocols to transfer information as they both work out the same.
This form of data transfer is not recommended, but I wanted to just point out that it is indeed possible.

What is the difference between Delegate and Notification?

What is the difference between Delegate and Notification?
I understood like delegate and protocol,
#protocol classADelegate
-(void)DelegateMethod;
#end
classB <classADelegate>{
classA *ObjOfclassA=[[classA alloc]init];
ObjOfclassA.delegate=self;
//while push later, here we have taken the pointer of classB(self) to `classA` and stored in delegate variable of classA. So, from `classA` we can call the function in `classB`
push:classA from here.
-(void)DelegateMethod{
nslog(#"i am rithik from India");
}
}
classA{
id <classADelegate> delegate;
-(void)viewdidload{
[self.delegate DelegateMethod];
}
}
My doubt is
1. Why don't we use in classA like this
classA{
**classB** <classADelegate> delegate;
[self.delegate DelegateMethod];
}
What is the reason for using "id" and what is the difference of them?
2. we have call the method of classB's DelegateMethod function which is came from protocol definition.
instead we can straightly call that method by defining that instance method of classB.because we have the got the pointer for classB in classA's delegate variable.
like this.
classB{
-(void)DelegateMethod;
}
and then call this in
classA{
classB delegate;
-(void)viewdidload{
[self.delegate DelegateMethod];
}
}
So, from the above we have avoided the protocol and id variable .
but I knew many of us use delegate and protocol. Here I came to know about any advantages while use delegate and protocol
here what is the usage of protocol implementation for method of DelegateMethod function.
instead instance definition .
What is the usage of those by #protocol. Please any one guide me right direction.
I'm new to iphone developement. Right now, I knew how to create delegate. but while I came to study about the NSNotification
That is also do the almost right job like delegate. So, when should I use the delgate or NSnotification.
Short Answer: You can think of delegates like a telephone call. You call up your buddy and specifically want to talk to them. You can say something, and they can respond. You can talk until you hang up the phone. Delegates, in much the same way, create a link between two objects, and you don't need to know what type the delegate will be, it simply has to implement the protocol. On the other hand, NSNotifications are like a radio station. They broadcast their message to whoever is willing to listen. The radio station can't receive feedback from it's listeners (unless it has a telephone, or delegate). The listeners can ignore the message, or they can do something with it. NSNotifications allow you to send a message to any objects, but you won't have a link between them to communicate back and forth. If you need this communication, you should probably implement a delegate. Otherwise, NSNotifications are simpler and easier to use, but may get you into trouble.
Long Answer:
Delegates are usually a more appropriate way of handling things, especially if you're creating a framework for others to use. You gain compile time checking for required methods when you use protocols with your delegates, so you know when you compile if you're missing any required methods. With NSNotificationCenter you have no such guarantee.
NSNotificationCenter is kind of "hack-ish" and is frequently used novice programmers which can lead to poor architecture. A lot of times these two features are interchangeable, but more "hardcore" developers might scoff at the use of the NSNotificationCenter.
Q: what is the reason for using "id" and what is the difference of them?
A: Using id allows you to send any object to the method as a parameter. Note that you can not send primitives such as bools, floats, doubles, ints, etc. unless they are wrapped in their respective Object wrappers.
classB{
-(void)DelegateMethod;
}
and then call this in
classA{
classB delegate;
-(void)viewdidload{
[self.delegate DelegateMethod];
}
}
The above example you provided would require that classA's delegate always be of type classB, which isn't advantageous. Instead of using delegates in this scenario, you would probably just use a variable that referred to your other class, say, myClassB. The beauty of delegates is that you can pass around any object, and the code just works as long as they implement the required methods (which the compiler ensures, as long as it's marked as the correct delegate type).
A delegate uses protocols and creates a has-a relationship between the two classes. One of the other benefits of delegates is that you can return something back to the owning class.
Notifications, on the other hand, are more geared towards point to multipoint communication. An example of using an NSNotification might be in a tab bar controller application, where you may need to notify multiple view controllers of a particular event so they can refresh data, etc. This is great for classes that have no knowledge of one another and it wouldn't make sense if they did.
Now, to your other questions:
Why do we use id?
In your class, you want a handle to an object of indeterminate type, but which implements the protocol you define. Take UIWebView, for example. There can be infinitesimal types of classes that can be a delegate for it, therefore, it should not name a specific type of class, but specify that the class must implement the UIWebViewDelegate protocol. This reduces coupling to an absolute minimum and creates a highly cohesive application where you are creating interaction based on behavior, not state.
So, let's run through an example:
#protocol ClassADelegate
- (NSString*) determineValue;
#end
#interface ClassA : NSObject
{
id<ClassADelegate> delegate;
}
// Make sure you are using assign, not retain or copy
#property (nonatomic, assign) id<ClassADelegate> delegate;
#end
The implementation of ClassA:
import "ClassA.h"
#implementation ClassA
#synthesize delegate;
- (void) somePrivateMethod
{
if (self.delegate && [self.delegate implementsProtocol:#protocol(ClassADelegate)])
{
NSString* value = [self.delegate determineValue];
// Do other work
}
}
- (void) dealloc
{
delegate = nil;
}
#end
In the header, we declare that the class will implement the ClassADelegate protocol:
#import "ClassA.h"
#interface ClassB : NSObject <ClassADelegate>
{
}
- (void) someMethod;
#end
In the implementation of ClassB we create an instance of ClassA and set B as the delegate of A:
#import "ClassB.h"
#implementation ClassB
- (void) someMethod
{
ClassA* aClass = [[ClassA alloc] init];
aClass.delegate = self;
// Other work and memory clean up of A.
// Some logic occurs in A where it calls the delegate (self) which will
// call the `determineValue` method of this class.
}
// Here's the delegate method we implement
- (NSString*) determineValue
{
return #"I did some work!";
}
#end
Delegate is passing message from one object to other object. It is like one to one communication while nsnotification is like passing message to multiple objects at the same time. All other objects that have subscribed to that notification or acting observers to that notification can or can’t respond to that event. Notifications are easier but you can get into trouble by using those like bad architecture. Delegates are more frequently used and are used with help of protocols.
Simply We can say,
Delegates:
One - to - One
Notification:
One - to - Many
To declare Delegate
#protocol DelegateName
#required
- (void)method:(NSString *)param;
#optional
- (void)methodOptional:(NSString *)param;
#end
And declare a property for Protocol
#property id <DelegateName> delegate;
You can use
myObject.delegate = <# some object conforming to DelegateName #>;
NSNotification declaration
[[NSNotificationCenter defaultCenter] addObserver:self
selector:#selector(notificationHappened:)
name:MyCustomNotificationName
object:nil];
Then Implement
- (void)notificationHappened:(NSNotification *)notification {
// do work here
}
You can post Notification from anywhere using,
[[NSNotificationCenter defaultCenter] postNotificationName:MyCustomNotificationName
object:self
userInfo:nil];
call removeObserver: when you are finished.
We can use notifications for a variety of reasons. For example, you could broadcast a notification to change how user-interface elements display information based on a certain event elsewhere in the program. Or you could use notifications as a way to ensure that objects in a document save their state before the document window is closed.
The general purpose of notifications is to inform other objects of program events so they can respond appropriately.But objects receiving notifications can react only after the event has occurred. This is a significant difference from delegation.
The delegate is given a chance to reject or modify the operation proposed by the delegating object. Observing objects, on the other hand, cannot directly affect an impending operation.

`[super viewDidLoad]` convention

I see some example code with [super viewDidLoad] called before your implementation and after your implementation.
I know you don't always have to call super (as seen in many other discussions).
When you do call it, is it expected before or after you code?
This could have consequences depending on what super's implementation does. Though you shouldn't have to know super's implementation to write yours.
Of course this goes for all of UIViewControllers delegate methods (willAppear, didAppear, etc...)
Any thoughts?
My rule of thumb is: if you're doing something related to initialization, always call the super class's method first (if you are going to call it at all). This gives the super class a chance to do any set-up that you may be relying on later in your method. If you're doing something related to destruction, call the super class's method last. This makes sure that you can rely on the state of the object throughout the execution of your method. Finally, take any other case on a case-by-case basis. For instance, if you're handling an event, you probably want to deal with the event first, and only invoke the super class's method if you chose not to handle the event or if you somehow altered it and want to pass it along the event chain.
Lets say you have 2 class, a Parent and a Child. Child inherits from Parent. They have a method called greet which returns a string.
Here is what the parent method looks like:
Code:
-(NSString *)greet {
return #"Hello";
}
We want the child to learn from his parents. So we use super to say greet how Mommy would greet, but with our own little additions too.
Code: // Inherits from Parent
-(NSString *)greet {
NSString *parentGreeting = [super greet];
return [parentGreeting stringByAppendingString:#", Mommy"]
}
So now Parent greets "Hello", and the Child greets "Hello, Mommy". Later on, if we change the parent's greet to return just "Hi", then both classes will be affected and you will have "Hi" and "Hi, Mommy".
super is used to call a method as defined by a superclass. It is used to access methods that have been overriden by subclasses so that the class can wrap its own code around a method that it's parent class implements. It's very handy if you are doing any sort of inheritance at all.

Dealing with variable assignments and async requests

I'm looking for a reliable design for handling assignments that have asynchronous requests involved. To further clarify, I have a class which handles Data Management. It is a singleton and contains a lot of top level data for me which is used throughout my iPhone application.
A view controller might do something such as the following:
users = [MySingleton sharedInstance].users;
MySingleton will then override the synthesized users getter and see if it is set. If it is not set, it will speak to a Connection Manager (a wrapper for NSURLConnection and its delegate methods) which fires off an asynchronous request, and this is where problems begin. I cannot guarantee when "users" will be available. I could change the request to synchronous, but that will directly effect user experience, especially in a mobile environment where bandwidth is limited already.
I need to be able to at some point, have some kind of locking/synchronization code going on in my getter that doesn't return users until it is available or is nil.
Once the NSURLConnection has the data available, it needs to callback something/somewhere with a response object and let the getter know the data is available.. whether it's failed or succeeded.
Any suggestions on handling this?
I solved this problem a couple ways in different apps.
One solution is to pass an object and selector along to notify such as:
- (id)getUsersAndNotifyObject:(id)object selector:(SEL)selector
This breaks the nice property behavior however. If you want to keep the methods as properties, have them return immediately, with either cached data or nil. If you need to go out to the network, do so asynchronous and then let the rest of the app know the data changed via KVO or the NSNotificationCenter. (Cocoa Bindings would be an option on the Mac, but they don't exist on iPhone).
The two methods are fairly similar. Register for updates with your shared instance, and then ask for the data. KVO is a little lighter weight if you just dealing with raw observable properties, but an NSNotification might be more convenient if you're interested in several different pieces of data.
With an NSNotification, the client object could register for one type of notification which includes the changed data in its userInfo dictionary instead of having to register obvservers for every single key path you're interested in.
An NSNotification would also allow you to pass back failures or other status information a lot more easily than straight KVO.
KVO method:
// register observer first so you don't miss an update
[[MySingleton sharedInstance] addObserver:self
forKeyPath:#"users"
options:(NSKeyValueObservingOptionNew | NSKeyValueObservingOptionOld)
context:&kvo_users_context];
users = [MySingleton sharedInstance].users;
// implement appropriate observeValueForKeyPath:ofObject:change:context: method
NSNotification Method:
[[NSNotificationCenter defaultCenter] addObserver:self
selector:#selector(sharedDataChanged:)
name:MySingletonDataUpdatedNotification
object:[MySingletonDataUpdatedNotification sharedInstance]];
users = [MySingleton sharedInstance].users;
// implement appropriate sharedDataChanged: method
You can either use a delegate pattern or a notification pattern here.
A delegate would let a particular object know when users is complete, a notification pattern would notify any object that wants to know. Both are valid, depending on your situation.
Just remember: if you have any race issues in your app, your architecture is probably all wrong.
It took me a while to realize what the best way of handling this kind of typical task; it turns out the clue is in the design of many of Cocoa and CocoaTouch's own APIs: delegation.
The reason so many of Cocoa's APIs use delegation is because it fits very well with the asynchronous nature of many GUI apps.
It seems perfectly normal to want do do something along the lines of:
users = [MyDataFactory getUsers];
Except, as you point out, you have no idea when the getUsers method will finish. Now, there are some light-weight solutions to this; amrox mentioned a few in his post above (personally I'd say notifications aren't such a good fit but the object:selector: pattern is reasonable), but if you are doing this kind of thing a lot the delegation pattern tends to yield a more elegant solution.
I'll try to explain by way of an example of how I do things in my application.
Let's say we have a domain class, Recipe. Recipes are fetched from a web service. I typically have a series of repository classes, one for each entity in my model. A repository class' responsibility is to fetch the data required for the entity (or a collection of them), use that data to construct the objects, and then pass those objects onto something else to make use of them (typically a controller or data source).
My RecipeRepository interface might look something like this:
#interface RecipeRepository {}
- (void)initWithDelegate:(id)aDelegate;
- (void)findAllRecipes;
- (void)findRecipeById:(NSUInteger)anId;
#end
I'd then define a protocol for my delegate; now, this can be done as an informal or formal protocol, there are pros and cons of each approach that aren't relevant to this answer. I'll go with a formal approach:
#protocol RepositoryDelegateProtocol
- (void)repository:(id)repository didRetrieveEntityCollection:(NSArray *)collection;
- (void)repository:(id)repository didRetrieveEntity:(id)entity;
#end
You'll notice I've gone for a generic approach; you will likely have multiple XXXRepository classes in your app and each will use the same protocol (you may also choose to extract a base EntityRepository class that encapsulates some common logic).
Now, to use this in a controller, for example, where you previous would have done something such as:
- (void)viewDidLoad
{
self.users = [MySingleton getUsers];
[self.view setNeedsDisplay];
}
You would do something like this:
- (void)viewDidLoad
{
if(self.repository == nil) { // just some simple lazy loading, we only need one repository instance
self.repository = [[[RecipeRepository alloc] initWithDelegate:self] autorelease];
}
[self.repository findAllRecipes];
}
- (void)repository:(id)repository didRetrieveEntityCollection:(NSArray *)collection;
{
self.users = collection;
[self.view setNeedsDisplay];
}
You could even extend this further to display some kind of "loading" notice with an additional delegate method:
#protocol RepositoryDelegateProtocol
- (void)repositoryWillLoadEntities:(id)repository;
#end
// in your controller
- (void)repositoryWillLoadEntities:(id)repository;
{
[self showLoadingView]; // etc.
}
Another thing about this design is that your repository classes really don't need to be singletons - they can be instantiated wherever you need them. They may deal with some kind of singleton connection manager but at this layer of abstraction a singleton is unnecessary (and its always good to avoid singletons where possible).
There is a downside to this approach; you may find you need layers of delegation at each level. For instance, your repositories may interact with some kind of connection object which does the actual asynchronous data loading; the repository might interact with the connection object using it's own delegation protocol.
As a result you might find you have to "bubble up" these delegation events throughout the different layers of your application using delegates that get more and more coarse-grained as they get closer to your application-level code. This can create a layer of indirection that can make your code harder to follow.
Anyway, this is my first answer on SO, I hope its been helpful.