MATLAB programming best practices - matlab

I'm looking for resources on how to structure medium- to large-scale MATLAB projects, especially ones that involve several independent modules. How do I manage global configuration variables, how do I structure the project into folders, how do I manage couplings between modules, etc.
Is there some kind of standard text on this subject? It looks as if most MATLAB textbooks have been written by scientists or engineers. What I'm looking for, I guess, is any MATLAB textbook written by a software engineer. :-)

MATLAB is an unusual choice for a large-scale projects and is as much suited for such task as assembler, COBOL or SQL. If you still choose MATLAB then at least automatically test the code! All kind of tests - integration tests, unit tests, load tests! And of course use a version control system.
As said, MATLAB was not created with large projects in mind therefore the only best practice regarding project structure, modules, coupling is the common sense.
If you are taking over an existing large MATLAB project then I am sorry with you, refactoring will be nightmare. If you are going to start a new large project with MATLAB then you are crazy - there are much better alternatives to MATLAB that are not that bad regarding numeric performance. Large project implies that almost all code is business logic, not numerics, therefore why for God's sake MATLAB?
Large project implies well structured components, which implies OO, which is the weak point of MATLAB because it sacrifices heap performance for numeric performance to the degree of unusability.
My experience:
I spent years in in a half-million LOC MATLAB project.
I have seen painless transition of multiple large MATLAB projects to C#.
With MATLAB you still have to use large amounts of Java for decent looking GUI, C/C++ MEX for fast not numeric parts like imports, maybe SQL, etc. With Java (or better C#) with a free numeric library you have only one language which is perfectly suited for everything you need in a large project.
I am not saying that MATLAB is bad - it rules for rapid prototyping and numerics! And Simulink has no alternatives (but can be compiled and used from everywhere).

You may want to have a look at "The Elements of Matlab Style" (review by Loren Shure).
Also, this review of good coding practices might be useful.

Related

Using a MATLAB code on Scilab

Is it possible to use a MATLAB code on Scilab? Is that what is meant when saying that Scilab is a "clone" from MATLAB?
There is a tool to automatically convert Matlab source to Scilab source, it's called M2SCI. A script parses the Matlab source code and replaces Matlab-specific functions by Scilab ones. See the documentation of the mfile2sci function.
Yes you can use MATLAB code on scilab. See these links for more information:
http://help.scilab.org/docs/5.4.0/fr_FR/section_36184e52ee88ad558380be4e92d3de21.html
http://help.scilab.org/docs/5.4.0/en_US/index.html
I would not bet on it. But if your code is simple enough chances are good.
Problems are:
There is encrypted p-code in Matlab that Scilab will not be able to open.
Matlab usually comes with a number of toolboxes that might not be available to you (i think especially Simulink)
last but not least (i don't know about scilab) there usually are minute differences in how functions are implemented.
There are a number of projects out there trying to replicate/replace MATLAB:
Julia language: which has a relatively similar syntax to MATLAB and offers great performance, but still lacks a lot of toolboxes/libraries, as well as not having a GUI like MATLAB. I think this has the brightest future among all MATLAB alternatives.
Python language and its libraries NumPy and matplotlib: which is the most used alternative. I think at this moment the community is a couple of orders of magnitude even bigger than MATLAB. Python is the de facto standard in machine learning and data science at the moment. But still, the syntax and memory concept is a bit far from what people are used to in the MATLAB ecosystem. There are also no equivalent to SIMULINK, although Spyder and Jupyter projects have come a long way in terms of the development environment.
Octave: is basically a clone of MATLAB to a point they consider any incompatibility as a bug. If you have a long MATLAB code that you don't want to touch, this is the safest bet. But again no alternative for SIMULINK.
SciLab and it's fork ScicoLab are the best alternatives in terms of GUI, having a SIMULINK replica xcos / scicos and a graphical user interface development features. However the community is not as big as Octave and the syntax is not completely compatible. Sadly the Scilab development team has gone through a devastating family crisis leading to the software falling behind.
Honorary mention of Modelica language implementations OpenModelica and jModelica for being a superior alternative to SIMULINK-SimScape. You should know that you can load Modelica scrips also in xcos and scicos. If you want to kno wmore about JModelica you may see this post.
you may check the MATLAB's Alternativeto page to see more Free and Open source alternatives.

Software for solving SDPs

I have been using cvx for doing some experiments with my SDPs. Although it is very easy to use, it is quite slow. I cannot run reasonably large instances in reasonable time. Hence would like someone to point to some faster software.
You can find a list of Semidefinite Programming codes on Hans Mittelmann's Decision Tree for Optimization Software. At least some of the codes are implemented in Matlab (like cvx, right?) or have a Matlab interface.

3D-accellerated plotting, as flexible as matlab, mathematica etc?

I am looking for a library to plot large data sets with a feature set similar to professional plotting tools (e.g. Matlab, Mathematica), but 3D accelareted. In particular I value
can be scripted like the professional tools above (flexible usage)
has a feature at least as big as these
fast (well, that's what the title says)
I can imagine (actually, I have very much in mind) something like this might exist for python - say, NumPy, SciPy. But I am not well-versed with these libraries yet. It would be great if I could convince people to abandon matlab.
Check out Mayavi, a 3d visualization package for Python that wraps around VTK. It's very flexible, has decent documentation, and hardware-accelerated rendering.
MathGL is cross-platform GPL library written in C/C++ which can plot huge data set (including 2- and 3-ranged data). Its list of graphics types is the same or larger than ones in Matlab and in Mathematica. MathGL have its own scripting language (MGL) and have interfaces to Python (including numpy), Fortran, Octave, Forth, Pascal and so on.

Has anyone tried to compile code into neural network and evolve it?

Do you know if anyone has tried to compile high level programming languages (java, c#, etc') into a recurrent neural network and then evolve them?
I mean that the whole process including memory usage is stored in a graph of a neural net, and I'm talking about complex programs (thinking about natural language processing problems).
When I say neural net I mean a directed weighted graphs that spreads activation, and the nodes are functions of their inputs (linear, sigmoid and multiplicative to keep it simple).
Furthermore, is that what people mean in genetic programming or is there a difference?
Neural networks are not particularly well suited for evolving programs; their strength tends to be in classification. If anyone has tried, I haven't heard about it (which considering I barely touch neural networks is not a surprise, but I am active in the general AI field at the moment).
The main reason why neural networks aren't useful for generating programs is that they basically represent a mathematical equation (numeric, rather than functional). Given some numeric input, you get a numeric output. It is difficult to interpret these in the context of a program any more complicated than simple arithmetic.
Genetic Programming traditionally uses Lisp, which is a pure functional language, and often programs are often shown as tree diagrams (which occasionally look similar to some neural network diagrams - is this the source of your confusion?). The programs are evolved by exchanging entire branches of a tree (a function and all its parameters) between programs or regenerating an entire branch randomly.
There are certainly a lot of good (and a lot of bad) references on both of these topics out there - I refrain from listing them because it isn't clear what you are actually interested in. Wikipedia covers each of these techniques, and is a good starting point.
Genetic programming is very different from Neural networks. What you are suggesting is more along the lines of genetic programming - making small random changes to a program, possibly "breeding" successful programs. It is not easy, and I have my doubts that it can be done successfully across a large program.
You may have more luck extracting a small but critical part of your program, one which has a few particular "aspects" (such as parameter values) that you can try to evolve.
Google is your friend.
Some sophisticated anti-virus programs as well as sophisticated malware use formal grammar and genetic operators to evolve against each other using neural networks.
Here is an example paper on the topic: http://nexginrc.org/nexginrcAdmin/PublicationsFiles/raid09-sadia.pdf
Sources: A class on Artificial Intelligence I took a couple years ago.
With regards to your main question, no one has ever tried that on programming languages to the best of my knowledge, but there is some research in the field of evolutionary computation that could be compared to something like that (but it's obviously a far-fetched comparison). As a matter of possible interest, I asked a similar question about sel-improving compilers a while ago.
For a difference between genetic algorithms and genetic programming, have a look at this question.
Neural networks have nothing to do with genetic algorithms or genetic programming, but you can obviously use either to evolve neural nets (as any other thing for that matters).
You could have look at genetic-programming.org where they claim that they have found some near human competitive results produced by genetic programming.
I have not heard of self-evolving and self-imrpvoing programs before. They may exist as special research tools like genetic-programming.org have but nothing solid for generic use. And even if they exist they are very limited to special purpose operations like malware detection as Alain mentioned.

Project ideas for discrete mathematics course using MATLAB? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Closed 1 year ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
A professor asked me to help making a specification for a college project.
By the time the students should know the basics of programming.
The professor is a mathematician and has little experience in other programming languages, so it should really be in MATLAB.
I would like some projects ideas. The project should
last about 1 to 2 months
be done individually
have web interface would be great
doesn't necessary have to go deep in maths, but some would be great
use a database (or store data in files)
What kind of project would make the students excited?
If you have any other tips I'll appreciate.
UPDATE: The students are sophomores and have already studied vector calculus. This project is for an one year Discrete Mathematics course.
UPDATE 2: The topics covered in the course are
Formal Logic
Proofs, Recursion, and Analysis of Algorithms
Sets and Combinatorics
Relations, Functions, and Matrices
Graphs and Trees
Graph Algorithms
Boolean Algebra and Computer Logic
Modeling Arithmetic, Computation, and Languages
And it'll be based on this book Mathematical Structures for Computer Science: A Modern Approach to Discrete Mathematics by Judith L. Gersting
General Suggestions:
There are many teaching resources at The MathWorks that may give you some ideas for course projects. Some sample links:
The MATLAB Central blogs, specifically some posts by Loren that include using LEGO Mindstorms in teaching and a webinar about MATLAB for teaching (note: you will have to sign up to see the webinar)
The Curriculum Exchange: a repository of course materials
Teaching with MATLAB and Simulink: a number of other links you may find useful
Specific Suggestions:
One of my grad school projects in non-linear dynamics that I found interesting dealt with Lorenz oscillators. A Lorenz oscillator is a non-linear system of three variables that can exhibit chaotic behavior. Such a system would provide an opportunity to introduce the students to numerical computation (iterative methods for simulating systems of differential equations, stability and convergence, etc.).
The most interesting thing about this project was that we were using Lorenz oscillators to encode and decode signals. This "encrypted communication" aspect was really cool, and was based on the following journal article:
Kevin M. Cuomo and Alan V. Oppenheim,
Circuit Implementation of Synchronized Chaos with Applications
to Communications, Physical Review
Letters 71(1), 65-68 (1993)
The article addresses hardware implementations of a chaotic communication system, but the equivalent software implementation should be simple enough to derive (and much easier for the students to implement!).
Some other useful aspects of such a project:
The behavior of the system can be visualized in 2-D and 3-D plots, thus exposing the students to a number of graphing utilities in MATLAB (PLOT, PLOT3, COMET, COMET3, etc.).
Audio signals can be read from files, encrypted using the Lorenz equations, written out to a new file, and then decrypted once again. You could even have the students each encrypt a signal with their Lorenz oscillator code and give it to another student to decrypt. This would introduce them to various file operations (FREAD, FWRITE, SAVE, LOAD, etc.), and you could even introduce them to working with audio data file formats.
You can introduce the students to the use of the PUBLISH command in MATLAB, which allows you to format M-files and publish them to various output types (like HTML or Word documents). This will teach them techniques for making useful help documentation for their MATLAB code.
I have found that implementing and visualizing Dynamical systems is great
for giving an introduction to programming and to an interesting branch of
applied mathematics. Because one can see the 'life' in these systems,
our students really enjoy this practical module.
We usually start off by visualizing a 1D attractor, so that we can
overlay the evolution rule/rate of change with the current state of
the system. That way you can teach computational aspects (integrating the system) and
visualization, and the separation of both in implementation (on a simple level, refreshing
graphics at every n-th computation step, but in C++ leading to threads, unsure about MATLAB capabilities here).
Next we add noise, and then add a sigmoidal nonlinearity to the linear attractor. We combine this extension with an introduction to version control (we use a sandbox SVN repository for this): The
students first have to create branches, modify the evolution rule and then merge
it back into HEAD.
When going 2D you can simply start with a rotation and modify it to become a Hopf oscillator, and visualize either by morphing a grid over time or by going 3D when starting with a distinct point. You can also visualize the bifurcation diagram in 3D. So you again combine generic MATLAB skills like 3D plotting with the maths.
To link in other topics, browse around in wikipedia: you can bring in hunter/predator models, chaotic systems, physical systems, etc.etc.
We usually do not teach object-oriented-programming from within MATLAB, although it is possible and you can easily make up your own use cases in the dynamical systems setting.
When introducing inheritance, we will already have moved on to C++, and I'm again unaware of MATLAB's capabilities here.
Coming back to your five points:
Duration is easily adjusted, because the simple 1D attractor can be
done quickly and from then on, extensions are ample and modular.
We assign this as an individual task, but allow and encourage discussion among students.
About the web interface I'm at a loss: what exactly do you have in mind, why is it
important, what would it add to the assignment, how does it relate to learning MATLAB.
I would recommend dropping this.
Complexity: A simple attractor is easily understood, but the sky's the limit :)
Using a database really is a lot different from config files. As to the first, there
is a database toolbox for accessing databases from MATLAB. Few institutes have the license though, and apart from that: this IMHO does not belong into such a course. I suggest introducing to the concept of config files, e.g. for the location and strength of the attractor, and later for the system's respective properties.
All this said, I would at least also tell your professor (and your students!) that Python is rising up against MATLAB. We are in the progress of going Python with our tutorials, but I understand if someone wants to stick with what's familiar.
Also, we actually need the scientific content later on, so the usefulness for you will probably depend on which department your course will be related to.
A lot of things are possible.
The first example that comes in mind is to model a public transportation network (the network of your city, with underground, buses, tramways, ...). It is represented by a weighted directed graph (you can use sparse matrix to represent it, for example).
You may, for example, ask them to compute the shortest path from one station to another one (Moore-dijkistra algorithm, for example) and display it.
So, for the students, the several steps to do are:
choose an appropriate representation for the network (it could be some objects to represent the properties of the stations and the lines, and a sparse matrix for the network)
load all the data (you can provide them the data in an XML file)
be able to draw the network (since you will put the coordinates of the stations)
calculate the shortest path from one point to another and display it in a pretty way
create a fronted (with GUI)
Of course, this could be complicated by adding connection times (when you change from one line to another), asking for several options (shortest path with minimum connections, take in considerations the time you loose by waiting for a train/bus, ...)
The level of details will depend on the level of the students and the time they could spend on it (it could be very simple, or very realist)
You want to do a project with a web interface and a database, but not any serious math... and you're doing it in MATLAB? Do you understand that MATLAB is especially designed to be used for "deep math", and not for web interfaces or databases?
I think if this is an intro to a Discrete Mathematics course, you should probably do something involving Discrete Mathematics, and not waste the students' time as they learn a bunch of things in that language that they'll never actually use.
Why not do something involving audio? I did an undergraduate project in which we used MATLAB to automatically beat-match different tunes and DJ mix between them. The full program took all semester, but you could do a subset of it. wavread() and the like are built in and easy to use.
Or do some simple image processing like finding Waldo using cross-correlation.
Maybe do something involving cryptography, have them crack a simple encryption scheme and feel like hackers.
MATLAB started life as a MATrix LAB, so maybe concentrating on problems in linear algebra would be a natural fit.
Discrete math problems using matricies include:
Spanning trees and shortest paths
The marriage problem (bipartite graphs)
Matching algorithms
Maximal flow in a network
The transportation problem
See Gil Strang's "Intro to Applied Math" or Knuth's "Concrete Math" for ideas.
You might look here: http://www.mathworks.com/academia/student_center/tutorials/launchpad.html
on the MathWorks website. The interactive tutorial (second link) is quite popular.
--Loren
I always thought the one I was assigned in grad school was a good choice-a magnetic lens simulator. The math isn't completely overwhelming so you can focus more on learning the language, and it's a good intro to the graphical capabilities (e.g., animating the path of an off-axis electron going through the lens).
db I/O and fancy interfaces are out of place in a discrete math course.
my matlab labs were typically algorithm implementations, with charts as output, and simple file input.
how hard is the material? image processing is really easy in matlab, can you do some discrete 2D filtering? blurs and stuff. http://homepages.inf.ed.ac.uk/rbf/HIPR2/filtops.htm