Project ideas for discrete mathematics course using MATLAB? [closed] - matlab

Closed. This question needs to be more focused. It is not currently accepting answers.
Closed 1 year ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
A professor asked me to help making a specification for a college project.
By the time the students should know the basics of programming.
The professor is a mathematician and has little experience in other programming languages, so it should really be in MATLAB.
I would like some projects ideas. The project should
last about 1 to 2 months
be done individually
have web interface would be great
doesn't necessary have to go deep in maths, but some would be great
use a database (or store data in files)
What kind of project would make the students excited?
If you have any other tips I'll appreciate.
UPDATE: The students are sophomores and have already studied vector calculus. This project is for an one year Discrete Mathematics course.
UPDATE 2: The topics covered in the course are
Formal Logic
Proofs, Recursion, and Analysis of Algorithms
Sets and Combinatorics
Relations, Functions, and Matrices
Graphs and Trees
Graph Algorithms
Boolean Algebra and Computer Logic
Modeling Arithmetic, Computation, and Languages
And it'll be based on this book Mathematical Structures for Computer Science: A Modern Approach to Discrete Mathematics by Judith L. Gersting

General Suggestions:
There are many teaching resources at The MathWorks that may give you some ideas for course projects. Some sample links:
The MATLAB Central blogs, specifically some posts by Loren that include using LEGO Mindstorms in teaching and a webinar about MATLAB for teaching (note: you will have to sign up to see the webinar)
The Curriculum Exchange: a repository of course materials
Teaching with MATLAB and Simulink: a number of other links you may find useful
Specific Suggestions:
One of my grad school projects in non-linear dynamics that I found interesting dealt with Lorenz oscillators. A Lorenz oscillator is a non-linear system of three variables that can exhibit chaotic behavior. Such a system would provide an opportunity to introduce the students to numerical computation (iterative methods for simulating systems of differential equations, stability and convergence, etc.).
The most interesting thing about this project was that we were using Lorenz oscillators to encode and decode signals. This "encrypted communication" aspect was really cool, and was based on the following journal article:
Kevin M. Cuomo and Alan V. Oppenheim,
Circuit Implementation of Synchronized Chaos with Applications
to Communications, Physical Review
Letters 71(1), 65-68 (1993)
The article addresses hardware implementations of a chaotic communication system, but the equivalent software implementation should be simple enough to derive (and much easier for the students to implement!).
Some other useful aspects of such a project:
The behavior of the system can be visualized in 2-D and 3-D plots, thus exposing the students to a number of graphing utilities in MATLAB (PLOT, PLOT3, COMET, COMET3, etc.).
Audio signals can be read from files, encrypted using the Lorenz equations, written out to a new file, and then decrypted once again. You could even have the students each encrypt a signal with their Lorenz oscillator code and give it to another student to decrypt. This would introduce them to various file operations (FREAD, FWRITE, SAVE, LOAD, etc.), and you could even introduce them to working with audio data file formats.
You can introduce the students to the use of the PUBLISH command in MATLAB, which allows you to format M-files and publish them to various output types (like HTML or Word documents). This will teach them techniques for making useful help documentation for their MATLAB code.

I have found that implementing and visualizing Dynamical systems is great
for giving an introduction to programming and to an interesting branch of
applied mathematics. Because one can see the 'life' in these systems,
our students really enjoy this practical module.
We usually start off by visualizing a 1D attractor, so that we can
overlay the evolution rule/rate of change with the current state of
the system. That way you can teach computational aspects (integrating the system) and
visualization, and the separation of both in implementation (on a simple level, refreshing
graphics at every n-th computation step, but in C++ leading to threads, unsure about MATLAB capabilities here).
Next we add noise, and then add a sigmoidal nonlinearity to the linear attractor. We combine this extension with an introduction to version control (we use a sandbox SVN repository for this): The
students first have to create branches, modify the evolution rule and then merge
it back into HEAD.
When going 2D you can simply start with a rotation and modify it to become a Hopf oscillator, and visualize either by morphing a grid over time or by going 3D when starting with a distinct point. You can also visualize the bifurcation diagram in 3D. So you again combine generic MATLAB skills like 3D plotting with the maths.
To link in other topics, browse around in wikipedia: you can bring in hunter/predator models, chaotic systems, physical systems, etc.etc.
We usually do not teach object-oriented-programming from within MATLAB, although it is possible and you can easily make up your own use cases in the dynamical systems setting.
When introducing inheritance, we will already have moved on to C++, and I'm again unaware of MATLAB's capabilities here.
Coming back to your five points:
Duration is easily adjusted, because the simple 1D attractor can be
done quickly and from then on, extensions are ample and modular.
We assign this as an individual task, but allow and encourage discussion among students.
About the web interface I'm at a loss: what exactly do you have in mind, why is it
important, what would it add to the assignment, how does it relate to learning MATLAB.
I would recommend dropping this.
Complexity: A simple attractor is easily understood, but the sky's the limit :)
Using a database really is a lot different from config files. As to the first, there
is a database toolbox for accessing databases from MATLAB. Few institutes have the license though, and apart from that: this IMHO does not belong into such a course. I suggest introducing to the concept of config files, e.g. for the location and strength of the attractor, and later for the system's respective properties.
All this said, I would at least also tell your professor (and your students!) that Python is rising up against MATLAB. We are in the progress of going Python with our tutorials, but I understand if someone wants to stick with what's familiar.
Also, we actually need the scientific content later on, so the usefulness for you will probably depend on which department your course will be related to.

A lot of things are possible.
The first example that comes in mind is to model a public transportation network (the network of your city, with underground, buses, tramways, ...). It is represented by a weighted directed graph (you can use sparse matrix to represent it, for example).
You may, for example, ask them to compute the shortest path from one station to another one (Moore-dijkistra algorithm, for example) and display it.
So, for the students, the several steps to do are:
choose an appropriate representation for the network (it could be some objects to represent the properties of the stations and the lines, and a sparse matrix for the network)
load all the data (you can provide them the data in an XML file)
be able to draw the network (since you will put the coordinates of the stations)
calculate the shortest path from one point to another and display it in a pretty way
create a fronted (with GUI)
Of course, this could be complicated by adding connection times (when you change from one line to another), asking for several options (shortest path with minimum connections, take in considerations the time you loose by waiting for a train/bus, ...)
The level of details will depend on the level of the students and the time they could spend on it (it could be very simple, or very realist)

You want to do a project with a web interface and a database, but not any serious math... and you're doing it in MATLAB? Do you understand that MATLAB is especially designed to be used for "deep math", and not for web interfaces or databases?
I think if this is an intro to a Discrete Mathematics course, you should probably do something involving Discrete Mathematics, and not waste the students' time as they learn a bunch of things in that language that they'll never actually use.
Why not do something involving audio? I did an undergraduate project in which we used MATLAB to automatically beat-match different tunes and DJ mix between them. The full program took all semester, but you could do a subset of it. wavread() and the like are built in and easy to use.
Or do some simple image processing like finding Waldo using cross-correlation.
Maybe do something involving cryptography, have them crack a simple encryption scheme and feel like hackers.

MATLAB started life as a MATrix LAB, so maybe concentrating on problems in linear algebra would be a natural fit.
Discrete math problems using matricies include:
Spanning trees and shortest paths
The marriage problem (bipartite graphs)
Matching algorithms
Maximal flow in a network
The transportation problem
See Gil Strang's "Intro to Applied Math" or Knuth's "Concrete Math" for ideas.

You might look here: http://www.mathworks.com/academia/student_center/tutorials/launchpad.html
on the MathWorks website. The interactive tutorial (second link) is quite popular.
--Loren

I always thought the one I was assigned in grad school was a good choice-a magnetic lens simulator. The math isn't completely overwhelming so you can focus more on learning the language, and it's a good intro to the graphical capabilities (e.g., animating the path of an off-axis electron going through the lens).

db I/O and fancy interfaces are out of place in a discrete math course.
my matlab labs were typically algorithm implementations, with charts as output, and simple file input.
how hard is the material? image processing is really easy in matlab, can you do some discrete 2D filtering? blurs and stuff. http://homepages.inf.ed.ac.uk/rbf/HIPR2/filtops.htm

Related

When(why) to use step/pulse/ramp functions in simulink?

Hello guys I'd like to know the answer to the question that is the titled named by.
For example if I have physical system described in differential equation(s), how should I know when I should use step, pulse or ramp generator?
What exactly does it do?
Thank you for your answers.
They are mostly the remnants of the classical control times. The main reason why they are so famous is because of their simple Laplace transform terms. 1,1/s and 1/s^2. Then you can multiply these with the plant and you would get the Laplace transform of the output.
Back in the day, what you only had was partial fraction expansion and Laplace transform tables to get an idea what the response would look like. And today, you can basically simulate whatever input you like. So they are not really neeeded which is the answer to your question.
But since people used these signals so often they have spotted certain properties. For example, step response is good for assessing the transients and the steady state tracking error value, ramp response is good for assessing (reference) following error (which introduces double integrators) and so on. Hence, some consider these signals as the characteristic functions though it is far from the truth. Especially, you should keep in mind that, just because the these responses are OK, the system is not necessarily stable.
However, keep in mind that these are extremely primitive ways of assessing the system. Currently, they are taught because they are good for giving homeworks and making people acquainted with Simulink etc.
They are used to determine system characteristics. If you are studying a system of differential equations you would want to know different characteristics from the response of the system from these kinds of inputs since these inputs are the very fundamental ones. For example a system whose output blows up for a pulse input is unstable, and you would not want to have such a system in real life(except in rare situations). It's too difficult for me to explain it all in an answer, you should start with this wiki page.

Evaluation of user-based collaborative filtering K-Nearest Neighbor Algorithm

I was trying to find evaluation mechanisms of collaborative K-Nearest neighbor algorithm, but i am confused how can I evaluate this algorithm. How can I be sure that the recommendation done by this algorithm is correct or good. Actually I have also developed an algorithm that i want to compare with it. but i am not sure how can i compare and evaluate both of them. The data set used by me is of movie lens.
your people help on evaluating this recomender system will be highly appreciated.
Evaluating recommender systems is a large concern of its research and industry communities. Look at "Evaluating collaborative filtering recommender systems", a Herlocker et al paper. The people who publish MovieLens data (the GroupLens research lab at the University of Minnesota) also publish many papers on recsys topics, and the PDFs are often free at http://grouplens.org/publications/.
Check out https://scholar.google.com/scholar?hl=en&q=evaluating+recommender+systems.
In short, you should use a method that hides some data. You will train your model on a portion of the data (called "training data") and test on the remainder of the data that your model has never seen before. There's a formal way to do this called cross-validation, but the general concept of visible training data versus hidden test data is the most important.
I also recommend https://www.coursera.org/learn/recommender-systems, a Coursera course on recommender systems taught by GroupLens folks. In that course you'll learn to use LensKit, a recommender systems framework in Java that includes a large evaluation suite. Even if you don't take the course, LensKit may be just what you want.

Matlab versus simulation products such as ANSYS and COMSOL

This may be the wrong place to ask this, but I can't find a better place on the SE network.
I've briefly worked with both Matlab and Ansys, and from what I have learnt/can gather, Matlab is a programming environment that has functions that perform common math, visualization and analysis operations. You primarily write programs in a textual fashion (.m files) or use Simulink to generate flow graphs (model-based development). Ansys on the other hand is primary a simulation environment where quite a lot can be done simply with the GUI (3D models, physics domains, configuration, display settings), and you can add equations at various points in the simulation engine in order to modify the simulation flow.
Whatever I understand is cursory and only serves as an overview. Can anyone give me a suitable real-world comparison between Matlab and Ansys (or any other simulation product such as COMSOL) that would allow us to understand when to use which, and the weaknesses of each system.
I haven't used Ansys, but Ansys is often compared with Comsol, and I've used Comsol and Matlab for years.
Matlab:
Programming language and environment that runs it. Which means it can do anything (that any other programming language can do). What are its highlights, compared to other languages?
Hundreds of built-in functions to work with Matrices. For example, in one project I needed to do simple matrix algebra (add, multiply, scale matrices), and also needed singular value decomposition. SVD is not something you could write in 50 lines of code, so I needed a ready-made library. At the time I used a library for Java, and wrote my own code for representing matrices and doing matrix algebra on them. That's a few hundreds of lines of code. Had I used Matlab, it would have been about ten lines of code, because all of it is there. I would have needed only to type help svd to find out how to use it. However, if you don't need any of that, stay away from Matlab at all costs! There are much better languages that are free.
Great to use as a calculator that is always open on the desktop, and can do back-of-the-envelope style calculations.
Plotting graphs. Many academics recommend Matlab as the tool of choice for producing publication-quality graphics. These can be exported as PDF and imported into Inkscape for further editing. The best thing is that commands for plotting a graph could be put into a script file, and then parts of it can be changed later as needed, which can save a lot of work compared to manually drawing a graph (imagine you wanted to change the axes or symbols used to present the data points).
Personally, I also use it for curve-fitting. It has many toolboxes, one of which is a neat tool that allows me to find equations that model a set of data points.
Comsol:
Specialised tool for solving partial differential equations (PDEs) on complicated domains using the finite element method (FEM). This might sound obscure, but many real-world engineering needs reduce to this. Such things as:
Finding loads, stresses and strains in civil engineering structures with complicated real-world geometry (what happens when there is gusty wind blowing onto a building or bridge?)
How do currents flow in particular conductive objects?
Chemical reactions in various industrial reactors.
What is the power efficiency of a generator (magnet spinning in coil) design?
How to place aircon outlets in a nontrivially-shaped room to achieve both good temperature distribution and good efficiency?
Comsol, as any other FEM tool that can work with arbitrary equations, can do multiphysics, which means, for example, that one could solve for chemistry of a battery, as well as the temperature and pressure, and how that feeds back into the chemical reaction (speeds up or slows down). Compared with a tool where you need to provide the equations, in Comsol, most of the things that would be needed to solve most problems are already there, and just need to be selected and applied to the geometry, which is also built inside Comsol. Also, equations of arbitrary description can be introduced.
The physical descriptions of how these physical substances behave are called PDEs.
Once Comsol has finished solving a problem, the data could be exported for post-processing into Matlab, which has much more versatile tools for manipulating data and making various plots.

Training for pattern recognition (neural network)

How do you train Neural Network for pattern recognition? For example a face recognition in a picture how would you define the output neurons? (eg. how to detect where is the face exactly, rather than just saying that there is a face in camera). Also, how about detecting multiple faces and different size of faces?
If anyone could give me a pointer it would be really great
Cheers!
Generally speaking I would split the problem into multiple stages e.g.
1 - Is there a face in the picture?
2 - Where is the face in the picture?
3 - Is the face in the picture one that the NN (Neural network) recognises?
In each instance I would suggest you build a separate NN and train it to answer the questions posed.
As for the structure of the NN, that's a bit trickier to answer as it depends on your input data and desired output. For example if you had a 100x100 px image then I suppose its feasible to have 10,000 inputs. You might want to consider doing some preprocessing before hand to say detect ovals that way you could look and see if there are a number of ovals in a predictable outline (1 for the face, 2 for the eyes, and one for the mouth possibly). If you are preprocessing the data then you might have inputs for each oval.
Now for the output... for question one you could just have one output to say how sure the NN is that there is a face in the input data i.e a valuer of 0.0 (defiantly no face) --> 1.0 (defiantly a face). This way you can move onto stages 2 and 3.
I might say at this point that this is a non-trivial problem and you might be better to have a look at some of the frameworks available e.g. OpenCV
Now for the training part, you need to have a stockpile of images available to train the NN. There are a number of ways in which you could train the NN. One potential solution is to use a technique called back propagation 1, 2. In general terms, you use the NN on an image and compare it to a predetermined output. If its wrong tweak the NN to produce the desired output and repeat.
If you want a good book on AI, then I would highly recommend Artificial Intelligence: A Modern Approach by Russell and Norvig. Im sure that there are more appropriate Computer Vision textbooks, but the Russell & Norvig book is an excellent starter.
Dear GantengX, you should prepare your self to the fact that the answer is so large, complex and hard to understand. There is so many approaches to pattern and face recognition. And implementing real-life face recognition system is a huge array of work that one person can never handle. Prepare your self for at least 10 years of life behind books on mathematic and artificial intelligence, I'm not talking about hiring 5 highly payed developers in the end who will understand what you want them to do. And maybe you will end up having your own face recognition system. There are also dozen of other issues that will jump out during the process. So be ready for a life full of stresses and problems.
I'm sorry for telling obvious things, but your question was not specific, complete answer would touch many different scientific spheres and will result as a book with over 1k pages.
Regarding your question (the short answer).
There are several principal parts that each face recognition app consists of:
Artificial intelligence algorithm
Optimization algorithm (for AI optimization)
Different filtration algorithms
Effective data set development
Items 1. and 2. are the central part of each system, they do the actual work. Any other preprocessing just makes the input data less complex, making it easier to do a decision for your AI. Don't start 3. and 4. until you will have your first results.
P.S.
Using existing solutions is more cost-effective, but if you are studying things then don't loose time like I did, and start your dissertation right away.

Has anyone tried to compile code into neural network and evolve it?

Do you know if anyone has tried to compile high level programming languages (java, c#, etc') into a recurrent neural network and then evolve them?
I mean that the whole process including memory usage is stored in a graph of a neural net, and I'm talking about complex programs (thinking about natural language processing problems).
When I say neural net I mean a directed weighted graphs that spreads activation, and the nodes are functions of their inputs (linear, sigmoid and multiplicative to keep it simple).
Furthermore, is that what people mean in genetic programming or is there a difference?
Neural networks are not particularly well suited for evolving programs; their strength tends to be in classification. If anyone has tried, I haven't heard about it (which considering I barely touch neural networks is not a surprise, but I am active in the general AI field at the moment).
The main reason why neural networks aren't useful for generating programs is that they basically represent a mathematical equation (numeric, rather than functional). Given some numeric input, you get a numeric output. It is difficult to interpret these in the context of a program any more complicated than simple arithmetic.
Genetic Programming traditionally uses Lisp, which is a pure functional language, and often programs are often shown as tree diagrams (which occasionally look similar to some neural network diagrams - is this the source of your confusion?). The programs are evolved by exchanging entire branches of a tree (a function and all its parameters) between programs or regenerating an entire branch randomly.
There are certainly a lot of good (and a lot of bad) references on both of these topics out there - I refrain from listing them because it isn't clear what you are actually interested in. Wikipedia covers each of these techniques, and is a good starting point.
Genetic programming is very different from Neural networks. What you are suggesting is more along the lines of genetic programming - making small random changes to a program, possibly "breeding" successful programs. It is not easy, and I have my doubts that it can be done successfully across a large program.
You may have more luck extracting a small but critical part of your program, one which has a few particular "aspects" (such as parameter values) that you can try to evolve.
Google is your friend.
Some sophisticated anti-virus programs as well as sophisticated malware use formal grammar and genetic operators to evolve against each other using neural networks.
Here is an example paper on the topic: http://nexginrc.org/nexginrcAdmin/PublicationsFiles/raid09-sadia.pdf
Sources: A class on Artificial Intelligence I took a couple years ago.
With regards to your main question, no one has ever tried that on programming languages to the best of my knowledge, but there is some research in the field of evolutionary computation that could be compared to something like that (but it's obviously a far-fetched comparison). As a matter of possible interest, I asked a similar question about sel-improving compilers a while ago.
For a difference between genetic algorithms and genetic programming, have a look at this question.
Neural networks have nothing to do with genetic algorithms or genetic programming, but you can obviously use either to evolve neural nets (as any other thing for that matters).
You could have look at genetic-programming.org where they claim that they have found some near human competitive results produced by genetic programming.
I have not heard of self-evolving and self-imrpvoing programs before. They may exist as special research tools like genetic-programming.org have but nothing solid for generic use. And even if they exist they are very limited to special purpose operations like malware detection as Alain mentioned.