Still curious about memory management in Objective C - iphone

In a class derived from UIViewController there is a message implementation that is accessing derived property view like this:
- (void) doSomethingOnView
{
MyView *v = (MyView *) [self view];
[v doOnView:YES];
[v release];
}
According to quick documentation on property view of UIView it is a nonatomic read-write property in retain mode. My books here (e.g. "Beginning iPhone 4 Development" by Mark, Nutting, LaMarche) are reading that on reading properties in retain mode a release on obtained reference is required.
But my analyzer complains the [v release] with "Incorrect decrement of the reference count of an object that is not owned at this point by the caller". Where is my fault?

In your first line, MyView *v is just a pointer that is being set to point to a property already owned by your UIViewControllwer. You UIViewController has it through inheritence. It is declared elsewhere, not by you, therefore it is not alloced by you.
When you set a pointer to point to an object which you never explicitly alloced or retained, you don't need to release it, because you never increased its reference count. Read more here if you are curious.
So the point is, don't call [v release];.

Consider the following code:
self.view = anotherView;
Then if viewis a property which is declared as retain, anotherView will be implicitly retained.
This works when you are assigning a variable.
In your code:
You are not using properties (i.e. the dot notation)
You are not assigning any variable
You try to release something you did not allocate yourself with alloc for instance
Try reading the Declared Properties and Memory management guide sections of Apple's Objective-C documentation again if that is not clear.

You didn't alloc the view, so you do not need to release it.
Where in the book are you reading that a release is needed in this case?

I think you misinterpreted what the book says. if you provide a quote we can explain it to you further.
In this case, you don't need to release cause there were no alloc or retain sent to v.

Related

Objective-C (iPhone) ivars and memory management

I am subclassing NSURLConnection, and used MGTwitterEngine as a base to help me get started. That may be irrelevant. However, I noticed in their code they don't use #property or #synthesize for their ivars. They have wrapped the ivars in accessor methods which look like this:
- (NSString *)identifier {
return [[_identifier retain] autorelease];
}
My question is two part. First, what effect does retain followed by autorelease have? It seems to me it would cancel itself, or worse yet leak.
Second, if I were to change the header file to have:
#property (nonatomic, retain, readonly) NSString* _identifier;
And used #synthesize indentifier = _identifier, wouldn't this do the same thing as the accessor method without having to write it?
Maybe it is just two different ways to do the same thing. But I wanted to ensure I have the correct understanding. Thanks.
Using #synthesize will actually only create a setter and a getter method. The code that is auto generated for you is guaranteed to use proper memory management, so that you do not need to worry.
MGTwitterEngines use of return [[ivar retain] autorelease] is actually the correct way to do it. Lets have two examples.
Assume a getter is defined as this:
-(Foo)foo {
return foo;
}
And then we execute this code:
bar = [[bar alloc] init]; // bar has aretain count of 1.
foo = bar.foo; // foo har a retain count of 1 (owned by bar).
[bar release]; // Bar and all it's ivars are released imidiatetly!
[foo doSomething]; // This will crash since the previous line released foo.
If we instead change the getter to this:
-(Foo)foo {
return [[foo retain] autorelease];
}
bar = [[bar alloc] init]; // bar has a retain count of 1
foo = bar.foo; // foo has a retain count of 2 (one owned by bar, 1 owned by autorelease pool).
[bar release]; // Bar and all it's ivars are released imidiatetly!
[foo doSomething]; // Will not crash since foo is still alive and owned by autorelease pool.
Hope this explains why you should always return properly autoreleased objects from all your getters. It is important that any return value can survive the deallocation of it's parent, since no class ca guarantee what a client will do with it's values once it is exposed to the wild.
Retain followed by autorelease does exactly what you might think it does. It sends the object a retain message and then sends it an autorelease message. Remember that autoreleasing an object adds that object to the autorelease pool but does not release it yet. The autorelease pool will send the object a release message at the end of the current iteration of the run loop. So, a retain followed by autorelease essentially says, "Make sure this object stays around until the end of the the current iteration of the run loop." If you need the returned value to hang around longer, you can retain it. If not, do nothing and the autorelease pool will handle it.
In this case, the string being sent retain and autorelease messages is a property. It's already retained by the parent object. So you might wonder why do this retain and autorelease thing at all? Well, there's no guarantee that the object won't release _identifier before the current iteration of the run loop ends. Consider this example:
- (NSString *)identifier { return _identifier; }
- (void)aMethod {
NSString *localId = [self identifier]; // localId refers to _identifier which is only retained by self
[self methodThatChangesIdentifierAndReleasesItsOldValue]; // self releases _identifier
NSLog(#"%#", localId); // crash, because localId (old value of _identifier) has been released
}
In this case, the returned identifier isn't retained and autoreleased. The NSLog line crashes because localId refers to a released string. However, had we used retain and autorelease in the getter, there would be no crash because localId would not be released until the end of the current iteration of the run loop.
As far as I know, your replacement with an identifier property would be just as good. It might not be identical code, but the effect should be the same.
Apple explains this well in Implementing Accessor Methods. The method quoted by you (named "Technique 1" by Apple) helps avoid bugs if the caller assigns a new value to the identifier property and then expects the retrieved value to still be available. It won't be needed most of the time but just returning the ivar value can lead to bugs that are hard to track down.
Generally one retains then autoreleases if you are returning something that you didn't own the first place. It will only leak if you own _identifier and there is a mismatch of retain/alloc/etc versus release/autorelease sent to that object.
Secondly, yeah you generally don't have to write the headers if you aren't doing something special beyond what the general boilerplate looks like. Apple has good documentation on properties, I suggest if you're still fuzzy, you look at those.

Where I should call [object release]?

I've subclassed some UITextField and added some custom properties.
In a UITableViewController, in the ViewDiDLoad I init them, and in the cellForRowAtIndexPath I add them to the cell with [cell.contentView addSubview:customTextField];
Each cell has a different customTextField as all of them are very different.
Where I should call the [customTextField release] ?
After I add them to the cell view ?
If for example I call [self.tableView reloadData] my customTextField are going to be added again to the cell, so maybe I should change my approach in doing this ?
thanks for the orientation ...
regards,
r.
You release an object when you no longer have any interest in it. This happens for many reasons; it might be because you've finished with the object, or have passed the control over the object lifetime to another object. It might be because you're about to replace the object with a fresh instance, it might be because you (the owner object) are about to die.
The last one seems to be relevant in your case. You create these object in viewDidLoad and repeatedly need them (i.e. to add them to cells) until your object is no longer functioning. In this case, just as you create them in viewDidLoad, you can release them in viewDidUnload.
Edit: I should really mention autorelease, but this isn't relevant in this instance. Memory management is best handled with a notion of 'owner' - the person who creates something (or retains it) should be responsible for deleting it (or releaseing in ObjC parlance). autorelease handle some cases where you need to give an object to an alternate owner, having previously owned it yourself (typically via a method return). If you are the creator, you can't just release it before returning it to the new owner, as it will be deleted before the new owner has a chance to stake an interest in it. However, you can't just not release it; it will leak. As such, the system provides a big list of objects that it will release on your behalf at some point in the future. You pass your release responsibility to this list, then return the object to the new owner. This list (the autorelease pool) ensures your release will occur at some point, but gives the new owner a chance to claim the object as theirs before it's released.
In your case, you have a clear interest in owning the objects for the lifetime of your view controller - you need to, at any time, be able to add them to view cells in response to a table data reload. You're only done with them when your view controller dies, so the viewDidUnload (or possibly dealloc) is the only sensible place to release them.
I always release my controls directly after I added them to a view using addSubView. When I work with tables, I also initialize them in the cellForRowAtIndexPath method.
Therefor the object stays alive the shortest time.
Adam Wright explains the theory of this very well, but let me give you some practice. You're thinking about this problem far too hard, and that almost always leads to bugs. There is a simple solution that solves this problem almost every time: Retain all ivars using accessors; don't retain non-ivars.
.h
#interface ... {
UITextField *_customTextField;
}
.m
#property (nonatomic, readwrite, retain) UITextField *customTextField;
...
#synthesize customTextField=_customTextField;
-(void)viewDiDLoad {
self.customTextField = [[[UITextField alloc] init....] autorelease];
}
...
- (void)dealloc {
// I do not recommend accessors in dealloc; but everywhere else I do
[_customTextField release]; _customTextField = nil;
}
Never access your ivars directly, except in dealloc (even that is controversial and some people recommend self.customTextField = nil; in dealloc; there are arguments either way). But never assign your ivars directly. If you will follow this rule, you will find that most of your memory problems go away.
The safest way to handle object ownership is to autorelease the view directly after initialization:
FooTextField* textField = [[[FooTextField alloc] init] autorelease];
[myCell.contentView addSubview:textField];
Adding the text field to a superview (the UITableViewCell's contentView) retains it. This way you don't have to care about releasing the view afterwards.
There seems to be a resentment against autorelease in the iPhone developer community. In my opinion, this resentment is unfounded. Autoreleasing an object adds very little overhead to the program if the objects lives longer than the current pass through the run loop.
Every object in Obj-C has a reference counter (retainCount), and when this counter goes to 0 the object is deallocated. When you allocate and initialize an object, the reference count is set to 1 - but you can retain it as many times you want to.
UITextField *textField = [[UITextField alloc] init]; // Reference counter = 1
[textField retain]; // Reference counter = 2
[textField retain]; // Reference counter = 3
The opposite of retain is release, which subtracts from the reference counter;
...
[textField release]; // Reference counter = 2
[textField release]; // Reference counter = 1
You can always get the reference counter of your objects;
printf("Retain count: %i", [textField retainCount]);
The method addSubview of UIView does retain your passed in sub view - and when it's done with it it releases it. If you need your UITextField later, in another scope (when the UIView is done with it and has released it) - you should not release it after you've added it to the super view. Most of the time you actually don't need to hold on to a reference, so you should release it after you've added it to the super view. If you dont - you can release it in the dealloc method of your scope.
Take a look at UITableView -dequeueReusableCellWithIdentifier: and -initWithStyle:reuseIdentifier:.
In -tableView:cellForRowAtIndexPath:, use -dequeueReusableCellWithIdentifier: and check if the result is nil. If it is, instantiate a new cell with -initWithStyle:reuseIdentifier:.
Send -autorelease to your customTextField upon creation and adding to the respective cell.
You should not add subview in cellForRowAtIndexPath! This will slow down the view as you add a subview each time the cell is displayed. Try using custom UITableViewCell class for that purpose.
Here is a perfect solution of UITableView customization
http://cocoawithlove.com/2009/04/easy-custom-uitableview-drawing.html
works jut perfectly

iPhone - dealloc - Release vs. nil

Wondering if someone with experience could possibly explain this a bit more. I have seen examples of...
[view release];
view = nil;
....inside the (void) dealloc.
What is the difference and is one better then the other?
What is the best way?
When doing retainCount testing I have personally seen nil drop a count from 3 to 0 for me, but release only drops it from 3 to 2.
What you have seen is probably these:
1) [foo release];
2) self.bar = nil;
3) baz = nil;
Is releasing the object, accessing it through the instance variable foo. The instance variable will become a dangling pointer. This is the preferred method in dealloc.
Is assigning nil to a property bar on self, that will in practice release whatever the property is currently retaining. Do this if you have a custom setter for the property, that is supposed to cleanup more than just the instance variable backing the property.
Will overwrite the pointer baz referencing the object with nil, but not release the object. The result is a memory leak. Never do this.
If you are not using properties (where self.property = nil will also release an object) then you should ALWAYS follow a release by code that sets the reference to nil, as you outlined:
[view release]; view = nil;
The reason is that it avoids he possibility that a reference can be used that is invalid. It's rare and hard to have happen, but it can occur.
This is even more important in viewDidUnload, if you are freeing IBOutlets - that's a more realistic scenario where a reference might go bad because of memory warnings unloading a view, and then some other code in the view trying to make use of a reference before the view is reloaded.
Basically it's just good practice and it will save you a crash at some point if you make it a habit to do this.
#bbullis22 you have seen the restain count drop from 3 to 0 because you set the reference to nil. then you asked for the retaincount of 'nil' which is zero. however, the object that used to be referenced has the same retain count - 1 (due to setting the reference to nil).
using release, the reference still references the same object, so that's why you see the retain count drop from 3 to 2 in this situation.
As far as usage inside your code, in your dealloc you don't need the assignment to the property, releasing is all you need to do.
- (void)dealloc {
[myProperty release]; // don't need to assign since you won't have the object soon anyway
[super dealloc];
}
I think using both is kind of safety net. With only release in place you could run in problem if you screwed reference counting management. You would release an object, giving its memory back to system but pointer would be still valid.
With nil you are guaranteed that program will not crash since sending message to nil does nothing.

Correct way to alloc/init instance variables in Objective-C?

I was looking at some sample code on Jeff LaMarche's excellent blog when I came across the following:
- (void)applicationDidFinishLaunching:(UIApplication*)application
{
CGRect rect = [[UIScreen mainScreen] bounds];
window = [[UIWindow alloc] initWithFrame:rect];
GLViewController *theController = [[GLViewController alloc] init];
self.controller = theController;
[theController release];
// ...
}
In the .h, we see that "window" and "controller" are ivars declared as so:
#interface OpenGLTestAppDelegate : NSObject
{
UIWindow *window;
GLViewController *controller;
}
#property (nonatomic, retain) IBOutlet UIWindow *window;
#property (nonatomic, retain) IBOutlet GLViewController *controller;
#end
My question is: Why are "window" and "controller" assigned in different ways?
I think I understand why each kind of assignment works (keeping track of retain count), but why are they assigned in different ways? Specifically, why isn't controller assigned in the same way window is with a single line like so without going through the setter:
controller = [[GLViewController alloc] init];
In general, when would you use the single line method and when would you use the multiple line method?
Thanks.
Does he create a custom setter for the controller instance variable?
If so, there may be code which is called when the controller variable is changed through the setter. Merely setting the controller variable with:
controller = [[GLViewController alloc] init];
would not invoke the setter method; however, assigning the newly allocated object to a local variable then setting it with:
self.controller = theController;
would invoke the setter method since it is a shorthand way of writing:
[self setController:theController];
and the extra code in the setter would be executed. This is commonly where you would expect the differentiation between the two methods.
Edit:
Evidently, after taking a look at the code, he doesn't implement a custom setter method, however the method that he has used is still most commonly used when a custom setter method would be implemented.
My guess at the reason behind the extra code would be that he plans to release the variable after allocation, and if assigned to a local variable, he can call the setter method with the local variable and then call release on the local variable afterwards. This would be overall more readable than using
[[self controller] release]
However, it is an odd way to do it, as the synthesized implementation of the setter will retain the instance variable, yet he then releases it once it has been set to the instance variable, and as the release call cancels out the retain call, it would make more sense to set the variable using the one-line method.
The extra code seems to be just because he specifically wants to use the property (setter method). In his implementation (GLView.m), -setController also sets a boolean ivar based on whether the controller responds to (implements) the -setupView: method.
Even so, it would seem that a one-line solution would work just as well:
self.controller = [[[GLViewController alloc] init] autorelease];
The same line as an explicit message send (without dot syntax) works as well:
[self setController:[[[GLViewController alloc] init] autorelease]];
Either approach will leave the new controller with the proper retain count, and still uses the setter property as desired.
(Note: The code in question is linked at the end of this blog post.)
Edit:
Sorry for any confusion. The code has a "GLViewController *controller" ivar and property both in ___PROJECTNAMEASIDENTIFIER___AppDelegate.m and GLView.m, and I was looking at the latter. (In the former, the setter is indeed synthesized, and it will retain the controller. On lines 77-81, you can see the code I mentioned, and he doesn't actually retain the controller — only the AppDelegate retains it.)
In the app delegate code, the synthesized setter will retain the GLViewController, so my one-line replacement advice still stands. One can argue both ways about readability, but for those who understand the retain-release idiom well, I would suggest that the one-line version is much more readable. It communicates the intent succinctly, and even provides an implicit hint that the setter will retain the controller. The extra local variable is really just unnecessary fluff.
As Quinn pointed out, the assignment to the controller ivar may be written in one line using autorelease method. The reason to use more verbose version is exactly to avoid autorelease and use manual release instead. This is due to Apple recommendation to minimize the use of autorelease pools on iPhone. So you must store the reference to the newly allocated object in a local variable to release it after a call to setter.
Considering the question when to use direct assignment to an instance variable (as in the case of window ivar) and when to use a setter method (as in the case of controller ivar), it is mostly a question of style, but you better be consistent.
There are two styles of ivar setting:
Always use direct assignment to an ivar. Switch to setter methods only for ivars for which setter must perform some additional work beside assignment.
Always use setter methods for all ivars.
Personally, I think that use of the second style results in more consistent and maintainable code. If some day you realize that your setter must perform more work you should change only the setter, while when using the first style you also should change all occurrences of direct assignment to the setter call.
Just found the good discussion of the issue in another thread: instance variable/ method argument naming in Objective C.

Objective C iPhone when to set object references to nil

I have been developing with objective C and the Cocoa framework for quite some time now. However it is still not absolutely clear to me, when am I supposed to set object references to nil. I know it is recommended to do so right before releasing an object that has a delegate and you should also do so in the viewDidUnload method for retained subviews. But exactly when should this be done and why?. What does it accomplish exactly?. Thank you in advance.
-Oscar
Say you have a pointer myView defined in your class' interface:
#interface MyClass {
UIView *myView;
}
#end
Then in your code, at some point, you may release that variable:
[myView release];
After you do that, myView, the pointer, won't be pointing to nil, but will be pointing to a memory address of an object that may not exist anymore (since you just released it). So, if you happen to do something after this, like:
[myView addSubview:otherView];
you'll get an error.
If, on the other hand, you do this:
[myView release];
myView = nil;
...
[myView addSubview:otherView];
the call to addSubview will not have any negative impact, since messages to nil are ignored.
As a corollary, you may see suggestions of using retain properties, such as:
#property(retain) UIView *myView;
and then in the code, just do:
self.myView = nil;
By doing that, the synthesized accessor will release the old object and set the reference to nil in one line of code. This may prove useful if you want to make sure all your properties are both released and set to nil.
One thing that you must never forget, is that memory management is done by means of retain release calls, and not by means of assigning nil. If you have an object with a retain count of 1, and assign nil to it's sole variable, you'll be leaking memory:
UIView *view = [[UIView alloc] initWithFrame:CGRectMake(0,0,10,10)];
view = nil;
// You just leaked a UIView instance!!!