iPhone FFT with Accelerate framework vDSP - iphone

I'm having difficulty implementing an FFT using vDSP. I understand the theory but am looking for a specific code example please.
I have data from a wav file as below:
Question 1. How do I put the audio data into the FFT?
Question 2. How do I get the output data out of the FFT?
Question 3. The ultimate goal is to check for low frequency sounds. How would I do this?
-(OSStatus)open:(CFURLRef)inputURL{
OSStatus result = -1;
result = AudioFileOpenURL (inputURL, kAudioFileReadPermission, 0, &mAudioFile);
if (result == noErr) {
//get format info
UInt32 size = sizeof(mASBD);
result = AudioFileGetProperty(mAudioFile, kAudioFilePropertyDataFormat, &size, &mASBD);
UInt32 dataSize = sizeof packetCount;
result = AudioFileGetProperty(mAudioFile, kAudioFilePropertyAudioDataPacketCount, &dataSize, &packetCount);
NSLog([NSString stringWithFormat:#"File Opened, packet Count: %d", packetCount]);
UInt32 packetsRead = packetCount;
UInt32 numBytesRead = -1;
if (packetCount > 0) {
//allocate buffer
audioData = (SInt16*)malloc( 2 *packetCount);
//read the packets
result = AudioFileReadPackets (mAudioFile, false, &numBytesRead, NULL, 0, &packetsRead, audioData);
NSLog([NSString stringWithFormat:#"Read %d bytes, %d packets", numBytesRead, packetsRead]);
}
}
return result;
}
FFT code below:
log2n = N;
n = 1 << log2n;
stride = 1;
nOver2 = n / 2;
printf("1D real FFT of length log2 ( %d ) = %d\n\n", n, log2n);
/* Allocate memory for the input operands and check its availability,
* use the vector version to get 16-byte alignment. */
A.realp = (float *) malloc(nOver2 * sizeof(float));
A.imagp = (float *) malloc(nOver2 * sizeof(float));
originalReal = (float *) malloc(n * sizeof(float));
obtainedReal = (float *) malloc(n * sizeof(float));
if (originalReal == NULL || A.realp == NULL || A.imagp == NULL) {
printf("\nmalloc failed to allocate memory for the real FFT"
"section of the sample.\n");
exit(0);
}
/* Generate an input signal in the real domain. */
for (i = 0; i < n; i++)
originalReal[i] = (float) (i + 1);
/* Look at the real signal as an interleaved complex vector by
* casting it. Then call the transformation function vDSP_ctoz to
* get a split complex vector, which for a real signal, divides into
* an even-odd configuration. */
vDSP_ctoz((COMPLEX *) originalReal, 2, &A, 1, nOver2);
/* Set up the required memory for the FFT routines and check its
* availability. */
setupReal = vDSP_create_fftsetup(log2n, FFT_RADIX2);
if (setupReal == NULL) {
printf("\nFFT_Setup failed to allocate enough memory for"
"the real FFT.\n");
exit(0);
}
/* Carry out a Forward and Inverse FFT transform. */
vDSP_fft_zrip(setupReal, &A, stride, log2n, FFT_FORWARD);
vDSP_fft_zrip(setupReal, &A, stride, log2n, FFT_INVERSE);
/* Verify correctness of the results, but first scale it by 2n. */
scale = (float) 1.0 / (2 * n);
vDSP_vsmul(A.realp, 1, &scale, A.realp, 1, nOver2);
vDSP_vsmul(A.imagp, 1, &scale, A.imagp, 1, nOver2);
/* The output signal is now in a split real form. Use the function
* vDSP_ztoc to get a split real vector. */
vDSP_ztoc(&A, 1, (COMPLEX *) obtainedReal, 2, nOver2);
/* Check for accuracy by looking at the inverse transform results. */
Compare(originalReal, obtainedReal, n);
Thanks

You put your audio sample data into the real part of the input, and zero the imaginary part.
If you are just interested in the magnitude of each bin in the frequency domain then you calculate sqrt(re*re + im*im) for each output bin. If you're only interested in relative magnitude then you can drop the sqrt and just calculate the squared magnitude, (re*re + im*im).
You would look at the magnitudes of the bin or bins (see (2)) that correspond to your frequency or frequencies of interest. If your sample rate is Fs, and your FFT size is N, then the corresponding frequency for output bin i is given by f = i * Fs / N. Conversely if you are interested in a specific frequency f then the bin of interest, i, is given by i = N * f / Fs.
Additional note: you will need to apply a suitable window function (e.g. Hann aka Hanning) to your FFT input data, prior to calculating the FFT itself.

You can check Apple’s documentation and take good care of data packing.
Here is my example:
// main.cpp
// FFTTest
//
// Created by Harry-Chris Stamatopoulos on 11/23/12.
//
/*
This is an example of a hilbert transformer using
Apple's VDSP fft/ifft & other VDSP calls.
Output signal has a PI/2 phase shift.
COMPLEX_SPLIT vector "B" was used to cross-check
real and imaginary parts coherence with the original vector "A"
that is obtained straight from the fft.
Tested and working.
Cheers!
*/
#include <iostream>
#include <Accelerate/Accelerate.h>
#define PI 3.14159265
#define DEBUG_PRINT 1
int main(int argc, const char * argv[])
{
float fs = 44100; //sample rate
float f0 = 440; //sine frequency
uint32_t i = 0;
uint32_t L = 1024;
/* vector allocations*/
float *input = new float [L];
float *output = new float[L];
float *mag = new float[L/2];
float *phase = new float[L/2];
for (i = 0 ; i < L; i++)
{
input[i] = cos(2*PI*f0*i/fs);
}
uint32_t log2n = log2f((float)L);
uint32_t n = 1 << log2n;
//printf("FFT LENGTH = %lu\n", n);
FFTSetup fftSetup;
COMPLEX_SPLIT A;
COMPLEX_SPLIT B;
A.realp = (float*) malloc(sizeof(float) * L/2);
A.imagp = (float*) malloc(sizeof(float) * L/2);
B.realp = (float*) malloc(sizeof(float) * L/2);
B.imagp = (float*) malloc(sizeof(float) * L/2);
fftSetup = vDSP_create_fftsetup(log2n, FFT_RADIX2);
/* Carry out a Forward and Inverse FFT transform. */
vDSP_ctoz((COMPLEX *) input, 2, &A, 1, L/2);
vDSP_fft_zrip(fftSetup, &A, 1, log2n, FFT_FORWARD);
mag[0] = sqrtf(A.realp[0]*A.realp[0]);
//get phase
vDSP_zvphas (&A, 1, phase, 1, L/2);
phase[0] = 0;
//get magnitude;
for(i = 1; i < L/2; i++){
mag[i] = sqrtf(A.realp[i]*A.realp[i] + A.imagp[i] * A.imagp[i]);
}
//after done with possible phase and mag processing re-pack the vectors in VDSP format
B.realp[0] = mag[0];
B.imagp[0] = mag[L/2 - 1];;
//unwrap, process & re-wrap phase
for(i = 1; i < L/2; i++){
phase[i] -= 2*PI*i * fs/L;
phase[i] -= PI / 2 ;
phase[i] += 2*PI*i * fs/L;
}
//construct real & imaginary part of the output packed vector (input to ifft)
for(i = 1; i < L/2; i++){
B.realp[i] = mag[i] * cosf(phase[i]);
B.imagp[i] = mag[i] * sinf(phase[i]);
}
#if DEBUG_PRINT
for (i = 0 ; i < L/2; i++)
{
printf("A REAL = %f \t A IMAG = %f \n", A.realp[i], A.imagp[i]);
printf("B REAL = %f \t B IMAG = %f \n", B.realp[i], B.imagp[i]);
}
#endif
//ifft
vDSP_fft_zrip(fftSetup, &B, 1, log2n, FFT_INVERSE);
//scale factor
float scale = (float) 1.0 / (2*L);
//scale values
vDSP_vsmul(B.realp, 1, &scale, B.realp, 1, L/2);
vDSP_vsmul(B.imagp, 1, &scale, B.imagp, 1, L/2);
//unpack B to real interleaved output
vDSP_ztoc(&B, 1, (COMPLEX *) output, 2, L/2);
// print output signal values to console
printf("Shifted signal x = \n");
for (i = 0 ; i < L/2; i++)
printf("%f\n", output[i]);
//release resources
free(input);
free(output);
free(A.realp);
free(A.imagp);
free(B.imagp);
free(B.realp);
free(mag);
free(phase);
}

One thing you need to be careful to is the DC component of the calculated FFT. I compared my results with the fftw library FFT and the imaginary part of the transform calculated with the vDSP library always had a different value at index 0 (which means 0 frequency, so DC).
Another measure I applied was to divide both real and imaginary parts by a factor of 2. I guess this is due to the algorithm used in the function. Also, both these problems occurred in the FFT process but not in the IFFT process.
I used vDSP_fft_zrip.

Related

Log2 approximation in fixed-point

I'v already implemented fixed-point log2 function using lookup table and low-order polynomial approximation but not quite happy with accuracy across the entire 32-bit fixed-point range [-1,+1). The input format is s0.31 and the output format is s15.16.
I'm posting this question here so that another user can post his answer (some comments were exchanged in another thread but they prefer to provide comprehensive answer in a separate thread). Any other answers are welcome, I would much appreciate if you could provide some speed vs accuracy details of your algorithm and its implementation.
Thanks.
By simply counting the leading zero bits in a fixed-point number x, one can determine log2(x) to the closest strictly smaller integer. On many processor architectures, there is a "count leading zeros" machine instruction or intrinsic. Where this is not available, a fairly efficient implementation of clz() can be constructed in a variety of ways, one of which is included in the code below.
To compute the fractional part of the logarithm, the two main obvious contenders are interpolation in a table and minimax polynomial approximation. In this specific case, quadratic interpolation in a fairly small table seems to be the more attractive option. x = 2i * (1+f), with 0 ≤ f < 1. We determine i as described above and use the leading bits of f to index into the table. A parabola is fit through this and two following table entries, computing the parameters of the parabola on the fly. The result is rounded, and a heuristic adjustment is applied to partially compensate for the truncating nature of fixed-point arithmetic. Finally, the integer portion is added, yielding the final result.
It should be noted that the computation involves right shifts of signed integers which may be negative. We need those right shifts to map to arithmetic right shifts at machine code level, something which is not guaranteed by the ISO-C standard. However, in practice most compilers do what is desired. In this case I used the Intel compiler on an x64 platform running Windows.
With a 66-entry table of 32-bit words, the maximum absolute error can be reduced to 8.18251e-6, so full s15.16 accuracy is achieved.
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <math.h>
#define FRAC_BITS_OUT (16)
#define INT_BITS_OUT (15)
#define FRAC_BITS_IN (31)
#define INT_BITS_IN ( 0)
/* count leading zeros: intrinsic or machine instruction on many architectures */
int32_t clz (uint32_t x)
{
uint32_t n, y;
n = 31 + (!x);
if ((y = (x & 0xffff0000U))) { n -= 16; x = y; }
if ((y = (x & 0xff00ff00U))) { n -= 8; x = y; }
if ((y = (x & 0xf0f0f0f0U))) { n -= 4; x = y; }
if ((y = (x & 0xccccccccU))) { n -= 2; x = y; }
if (( (x & 0xaaaaaaaaU))) { n -= 1; }
return n;
}
#define LOG2_TBL_SIZE (6)
#define TBL_SIZE ((1 << LOG2_TBL_SIZE) + 2)
/* for i = [0,65]: log2(1 + i/64) * (1 << 31) */
const uint32_t log2Tab [TBL_SIZE] =
{
0x00000000, 0x02dcf2d1, 0x05aeb4dd, 0x08759c50,
0x0b31fb7d, 0x0de42120, 0x108c588d, 0x132ae9e2,
0x15c01a3a, 0x184c2bd0, 0x1acf5e2e, 0x1d49ee4c,
0x1fbc16b9, 0x22260fb6, 0x24880f56, 0x26e2499d,
0x2934f098, 0x2b803474, 0x2dc4439b, 0x30014ac6,
0x32377512, 0x3466ec15, 0x368fd7ee, 0x38b25f5a,
0x3acea7c0, 0x3ce4d544, 0x3ef50ad2, 0x40ff6a2e,
0x43041403, 0x450327eb, 0x46fcc47a, 0x48f10751,
0x4ae00d1d, 0x4cc9f1ab, 0x4eaecfeb, 0x508ec1fa,
0x5269e12f, 0x5440461c, 0x5612089a, 0x57df3fd0,
0x59a80239, 0x5b6c65aa, 0x5d2c7f59, 0x5ee863e5,
0x60a02757, 0x6253dd2c, 0x64039858, 0x65af6b4b,
0x675767f5, 0x68fb9fce, 0x6a9c23d6, 0x6c39049b,
0x6dd2523d, 0x6f681c73, 0x70fa728c, 0x72896373,
0x7414fdb5, 0x759d4f81, 0x772266ad, 0x78a450b8,
0x7a231ace, 0x7b9ed1c7, 0x7d17822f, 0x7e8d3846,
0x80000000, 0x816fe50b
};
#define RND_SHIFT (31 - FRAC_BITS_OUT)
#define RND_CONST ((1 << RND_SHIFT) / 2)
#define RND_ADJUST (0x10d) /* established heuristically */
/*
compute log2(x) in s15.16 format, where x is in s0.31 format
maximum absolute error 8.18251e-6 # 0x20352845 (0.251622232)
*/
int32_t fixed_log2 (int32_t x)
{
int32_t f1, f2, dx, a, b, approx, lz, i, idx;
uint32_t t;
/* x = 2**i * (1 + f), 0 <= f < 1. Find i */
lz = clz (x);
i = INT_BITS_IN - lz;
/* normalize f */
t = (uint32_t)x << (lz + 1);
/* index table of log2 values using LOG2_TBL_SIZE msbs of fraction */
idx = t >> (32 - LOG2_TBL_SIZE);
/* difference between argument and smallest sampling point */
dx = t - (idx << (32 - LOG2_TBL_SIZE));
/* fit parabola through closest three sampling points; find coeffs a, b */
f1 = (log2Tab[idx+1] - log2Tab[idx]);
f2 = (log2Tab[idx+2] - log2Tab[idx]);
a = f2 - (f1 << 1);
b = (f1 << 1) - a;
/* find function value for argument by computing ((a*dx+b)*dx) */
approx = (int32_t)((((int64_t)a)*dx) >> (32 - LOG2_TBL_SIZE)) + b;
approx = (int32_t)((((int64_t)approx)*dx) >> (32 - LOG2_TBL_SIZE + 1));
approx = log2Tab[idx] + approx;
/* round fractional part of result */
approx = (((uint32_t)approx) + RND_CONST + RND_ADJUST) >> RND_SHIFT;
/* combine integer and fractional parts of result */
return (i << FRAC_BITS_OUT) + approx;
}
/* convert from s15.16 fixed point to double-precision floating point */
double fixed_to_float_s15_16 (int32_t a)
{
return a / 65536.0;
}
/* convert from s0.31 fixed point to double-precision floating point */
double fixed_to_float_s0_31 (int32_t a)
{
return a / (65536.0 * 32768.0);
}
int main (void)
{
double a, res, ref, err, maxerr = 0.0;
int32_t x, start, end;
start = 0x00000001;
end = 0x7fffffff;
printf ("testing fixed_log2 with inputs in [%17.10e, %17.10e)\n",
fixed_to_float_s0_31 (start), fixed_to_float_s0_31 (end));
for (x = start; x < end; x++) {
a = fixed_to_float_s0_31 (x);
ref = log2 (a);
res = fixed_to_float_s15_16 (fixed_log2 (x));
err = fabs (res - ref);
if (err > maxerr) {
maxerr = err;
}
}
printf ("max. err = %g\n", maxerr);
return EXIT_SUCCESS;
}
For completeness, I am showing the minimax polynomial approximation below. The coefficients for such approximations can be generated by several tools such as Maple, Mathematica, Sollya or with homebrew code using the Remez algorithm, which is what I used here. The code below shows the original floating-point coefficients, the dynamic scaling used to maximize accuracy in intermediate computation, and the heuristic adjustments applied to mitigate the impact of non-rounding fixed-point arithmetic.
A typical approach for computation of log2(x) is to use x = 2i * (1+f) and use approximation of log2(1+f) for (1+f) in [√½, √2], which means that we use a polynomial p(f) on the primary approximation interval [√½-1, √2-1].
The intermediate computation scales up operands as far as feasible for improved accuracy under the restriction that we want to use a 32-bit mulhi operation as its basic building block, as this is a native instruction on many 32-bit architectures, accessible either via inline machine code or as an intrinsic. As in the table-based code, there are right shifts of signed data which may be negative, and such right shifts must map to arithmetic right shifts, something that ISO-C doesn't guarantee but most C compilers do.
I managed to get the maximum absolute error for this variant down to 1.11288e-5, so almost full s15.16 accuracy but slightly worse than for the table-based variant. I suspect I should have added one additional term to the polynomial.
/* on 32-bit architectures, there is often an instruction/intrinsic for this */
int32_t mulhi (int32_t a, int32_t b)
{
return (int32_t)(((int64_t)a * (int64_t)b) >> 32);
}
#define RND_SHIFT (25 - FRAC_BITS_OUT)
#define RND_CONST ((1 << RND_SHIFT) / 2)
#define RND_ADJUST (-2) /* established heuristically */
/*
compute log2(x) in s15.16 format, where x is in s0.31 format
maximum absolute error 1.11288e-5 # 0x5a82689f (0.707104757)
*/
int32_t fixed_log2 (int32_t x)
{
int32_t lz, i, f, p, approx;
uint32_t t;
/* x = 2**i * (1 + f), 0 <= f < 1. Find i */
lz = clz (x);
i = INT_BITS_IN - lz;
/* force (1+f) into range [sqrt(0.5), sqrt(2)] */
t = (uint32_t)x << lz;
if (t > (uint32_t)(1.414213562 * (1U << 31))) {
i++;
t = t >> 1;
}
/* compute log2(1+f) for f in [-0.2929, 0.4142] */
f = t - (1U << 31);
p = + (int32_t)(-0.206191055 * (1U << 31) - 1);
p = mulhi (p, f) + (int32_t)( 0.318199910 * (1U << 30) - 18);
p = mulhi (p, f) + (int32_t)(-0.366491705 * (1U << 29) + 22);
p = mulhi (p, f) + (int32_t)( 0.479811855 * (1U << 28) - 2);
p = mulhi (p, f) + (int32_t)(-0.721206390 * (1U << 27) + 37);
p = mulhi (p, f) + (int32_t)( 0.442701618 * (1U << 26) + 35);
p = mulhi (p, f) + (f >> (31 - 25));
/* round fractional part of the result */
approx = (p + RND_CONST + RND_ADJUST) >> RND_SHIFT;
/* combine integer and fractional parts of result */
return (i << FRAC_BITS_OUT) + approx;
}

Recursively use of self-implemented cuIDFT.cu leads to changing output every time when re-runing the code

I have implemented a CUDA version of inverse discrete cosine transform (IDCT), by "translating" the MATLAB built-in function idct.m into CUDA:
My implementation is cuIDCT.cu, works when m = n and both m and n are even numbers.
cuIDCT.cu
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <cufft.h>
#include <cuComplex.h>
// round up n/m
inline int iDivUp(int n, int m)
{
return (n + m - 1) / m;
}
typedef cufftComplex complex;
#define PI 3.1415926535897932384626433832795028841971693993751
__global__
void idct_ComputeWeightsKernel(const int n, complex *ww)
{
const int pos = threadIdx.x + blockIdx.x * blockDim.x;
if (pos >= n) return;
ww[pos].x = sqrtf(2*n) * cosf(pos*PI/(2*n));
ww[pos].y = sqrtf(2*n) * sinf(pos*PI/(2*n));
}
__global__
void idct_ComputeEvenKernel(const float *b, const int n, const int m, complex *ww, complex *y)
{
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
if (ix >= n || iy >= m) return;
const int pos = ix + iy*n;
// Compute precorrection factor
ww[0].x = ww[0].x / sqrtf(2);
ww[0].y = ww[0].y / sqrtf(2);
y[iy + ix*m].x = ww[iy].x * b[pos];
y[iy + ix*m].y = ww[iy].y * b[pos];
}
__global__
void Reordering_a0_Kernel(complex *y, const int n, const int m, complex *yy)
{
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
if (ix >= n || iy >= m) return;
const int pos = ix + iy*n;
yy[iy + ix*n].x = y[pos].x / (float) n;
yy[iy + ix*n].y = y[pos].y / (float) n;
}
__global__
void Reordering_a_Kernel(complex *yy, const int n, const int m, float *a)
{
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
if (ix >= n || iy >= m) return;
const int pos = ix + iy*n;
// Re-order elements of each column according to equations (5.93) and (5.94) in Jain
if (iy < n/2)
{
a[ix + 2*iy*n] = yy[pos].x;
a[ix + (2*iy+1)*n] = yy[ix + (m-iy-1)*n].x;
}
}
/**
* a = idct(b), where a is of size [n m].
* #param b, input array
* #param n, first dimension of a
* #param m, second dimension of a
* #param a, output array
*/
void cuIDCT(float *h_in, int n, int m, float *h_out) // a is of size [n m]
{
const int data_size = n * m * sizeof(float);
// device memory allocation
float *d_in, *d_out;
cudaMalloc(&d_in, data_size);
cudaMalloc(&d_out, data_size);
// transfer data from host to device
cudaMemcpy(d_in, h_in, data_size, cudaMemcpyHostToDevice);
// compute IDCT using CUDA
// begin============================================
// Compute weights
complex *ww;
cudaMalloc(&ww, n*sizeof(complex));
dim3 threads(256);
dim3 blocks(iDivUp(n, threads.x));
idct_ComputeWeightsKernel<<<blocks, threads>>>(n, ww);
complex *y;
complex *yy;
cufftHandle plan;
dim3 threads1(32, 6);
dim3 blocks2(iDivUp(n, threads1.x), iDivUp(m, threads1.y)); // for even case
int Length[1] = {m}; // for each IFFT, the length is m
cudaMalloc(&y, n*m*sizeof(complex));
idct_ComputeEvenKernel<<<blocks2, threads1>>>(d_in, n, m, ww, y);
cufftPlanMany(&plan, 1, Length,
Length, 1, m,
Length, 1, m, CUFFT_C2C, n);
cufftExecC2C(plan, y, y, CUFFT_INVERSE); // y is of size [n m]
cudaMalloc(&yy, n*m*sizeof(complex));
Reordering_a0_Kernel<<<blocks2, threads1>>>(y, n, m, yy);
Reordering_a_Kernel<<<blocks2, threads1>>>(yy, n, m, d_out);
// end============================================
// transfer result from device to host
cudaMemcpy(h_out, d_out, data_size, cudaMemcpyDeviceToHost);
// cleanup
cufftDestroy(plan);
cudaFree(ww);
cudaFree(y);
cudaFree(yy);
cudaFree(d_in);
cudaFree(d_out);
}
Then I compared the result of my CUDA IDCT (i.e. cuIDCT.cu) against MATLAB idct.m using following code:
a test main.cpp function, and
a MATLAB main function main.m to read result from CUDA and compare it against MATLAB.
main.cpp
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <helper_functions.h>
#include <stdlib.h>
#include <stdio.h>
// N must equal to M, and both must be even numbers
#define N 256
#define M 256
void WriteDataFile(const char *name, int w, int h, const float *in, const float *out)
{
FILE *stream;
stream = fopen(name, "wb");
float data = 202021.25f;
fwrite(&data, sizeof(float), 1, stream);
fwrite(&w, sizeof(w), 1, stream);
fwrite(&h, sizeof(h), 1, stream);
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)
{
const int pos = j + i * h;
fwrite(in + pos, sizeof(float), 1, stream);
fwrite(out + pos, sizeof(float), 1, stream);
}
fclose(stream);
}
void cuIDCT(float *b, int n, int m, float *a);
int main()
{
// host memory allocation
float *h_in = new float [N * M];
float *h_out = new float [N * M];
float *h_temp = new float [N * M];
// input data initialization
for (int i = 0; i < N * M; i++)
{
h_in[i] = (float)rand()/(float)RAND_MAX;
h_out[i] = h_in[i];
h_temp[i] = h_in[i];
}
// please comment either one case for testing
// test case 1: use cuIDCT.cu once
// cuIDCT(h_in, N, M, h_out);
// test case 2: iteratively use cuIDCT.cu
for (int i = 0; i < 4; i++)
{
if (i % 2 == 0)
cuIDCT(h_out, N, M, h_temp);
else
cuIDCT(h_temp, N, M, h_out);
}
// write data, for further visualization using MATLAB
WriteDataFile("test.flo", N, M, h_in, h_out);
// cleanup
delete [] h_in;
delete [] h_out;
delete [] h_temp;
cudaDeviceReset();
}
main.m
clc;clear;
% read
[h_in, h_out] = read_data('test.flo');
% MATLAB result, for test case 1, comment the for-loop
matlab_out = h_in;
for i = 1:4
matlab_out = idct(matlab_out);
end
% compare
err = matlab_out - h_out;
% show
figure(1);
subplot(221); imshow(h_in, []); title('h\_in'); colorbar
subplot(222); imshow(h_out, []); title('h\_out'); colorbar
subplot(223); imshow(matlab_out, []); title('matlab\_out'); colorbar
subplot(224); imshow(err, []); title('error map'); colorbar
disp(['maximum error between CUDA and MATLAB is ' ...
num2str(max(max(abs(err))))])
I ran the code on Visual Studio 11 (i.e. VS2012) in Windows 7 with Nvidia GPU Tesla K20c, using CUDA Toolkit version 7.5, and my MATLAB version is R2015b.
My test steps:
For test case 1. Un-comment test case 1 and comment test case 2.
Run main.cpp.
Run main.m in MATLAB.
Repeat step 1 and step 2 (without any change, just re-run the code).
I repeated step 3 for 20 times. The output result is unchanged, and results in main.m are:
results of test case 1
The maximum error is 7.7152e-07.
For test case 2. Un-comment test case 2 and comment test case 1.
Run main.cpp.
Run main.m in MATLAB.
Repeat step 1 and step 2 (without any change, just re-run the code).
I repeated step 3 for 20 times. The output result is changed, and results in main.m are (not enough reputation to put all images, only wrong case is shown below):
one situation (the wrong one) of test case 2
The maximum error is 0.45341 (2 times), 0.44898 (1 time), 0.26186 (1 time), 0.26301 (1 time), and 9.5716e-07 (15 times).
From the test results, my conclusion is:
From test case 1: cuIDCT.cu is numerically correct (error ~10^-7) to idct.m.
From test case 2: recursively use of cuIDCT.cu leads to unstable result (i.e. the output changes every time when re-run the code and may sometimes be numerically wrong, error ~0.1)
My question:
From test case 1 we know cuIDCT.cu is numerically correct to idct.m. But why recursiviely use of cuIDCT.cu leads to different output result each time when re-run the code?
Any helps or suggestions are highly appreciated.
I believe the variability in your results is coming about due to this code in your idct_ComputeEvenKernel:
// Compute precorrection factor
ww[0].x = ww[0].x / sqrtf(2);
ww[0].y = ww[0].y / sqrtf(2);
It's not entirely clear what your intent is here, but it's doubtful that this code could be doing what you want. You may be confused about the CUDA execution model.
The above code will be executed by every CUDA thread that you launch for that kernel that passes the thread check:
if (ix >= n || iy >= m) return;
I believe this means 65536 threads will all execute this code in that kernel. Furthermore, the threads will execute that code in more-or-less any order (not all CUDA threads execute in lock-step). They may even step on each other as they are trying to write out their values to the location ww[0]. So the final result in ww[0] will be quite unpredictable.
When I comment out those lines of code, the results become stable for me (albeit different from what they were with those lines in place), unchanging from run to run.
I'd like to point something else out. Wherever you are calculating the .x and .y values of a complex quantity, my suggestion would be to rework the code from this (for example):
y[iy + ix*m].x = ww[iy].x * b[pos];
y[iy + ix*m].y = ww[iy].y * b[pos];
to this:
complex temp1, temp2;
temp1 = ww[iy];
temp2.x = temp1.x * b[pos];
temp2.y = temp2.y * b[pos];
y[iy + ix*m] = temp2;
At least according to my testing, the compiler doesn't seem to be making this optimization for you, and one side-effect benefit is that it's much easier to test your code with cuda-memcheck --tool initcheck .... In the first realization, the compiler will load y[iy + ix*m] as an 8 byte quantity, modify either 4 or 8 bytes of it, then store y[iy + ix*m] as an 8 byte quantity. The second realization should be more efficient (it eliminates the load of y[]), and eliminates the load of an uninitialized quantity (y[]), which the cuda-memcheck tool will report as a hazard.
This variability I'm describing should be possible whether you run either the 1-pass version of your code or the 4-pass version of your code. Therefore I think your statements about the 1-pass version being correct are suspect. I think if you run the 1-pass version enough, you will eventually see variability (although it may require varying initial memory conditions, or running on different GPU types). Even in your own results, we see that 15 out of 20 runs of the 4 pass code produce "correct" results, i.e. the residual error is ~1e-7
Here's my modified cuIDCT.cu file, modified from the version you posted here. The assumption I'm making below is that you wanted to compute the scaling on ww[0] only once, in which case we can easily handle that arithmetic as an addendum to the previous idct_ComputeWeightsKernel:
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <cufft.h>
#include <cuComplex.h>
#include <helper_cuda.h>
#include "assert.h"
// round up n/m
inline int iDivUp(int n, int m)
{
return (n + m - 1) / m;
}
typedef cufftComplex complex;
#define PI 3.1415926535897932384626433832795028841971693993751
#define cufftSafeCall(err) __cufftSafeCall(err, __FILE__, __LINE__)
inline void __cufftSafeCall(cufftResult err, const char *file, const int line)
{
if( CUFFT_SUCCESS != err) {
fprintf(stderr, "CUFFT error in file '%s', line %d\n %s\nerror %d: %s\nterminating!\n",__FILE__, __LINE__,err, \
_cudaGetErrorEnum(err)); \
cudaDeviceReset(); assert(0); \
}
}
__global__
void idct_ComputeWeightsKernel(const int n, complex *ww)
{
const int pos = threadIdx.x + blockIdx.x * blockDim.x;
if (pos >= n) return;
complex temp;
temp.x = sqrtf(2*n) * cosf(pos*PI/(2*n));
temp.y = sqrtf(2*n) * sinf(pos*PI/(2*n));
if (pos == 0) {
temp.x /= sqrtf(2);
temp.y /= sqrtf(2);}
ww[pos] = temp;
}
__global__
void idct_ComputeEvenKernel(const float *b, const int n, const int m, complex *ww, complex *y)
{
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
if (ix >= n || iy >= m) return;
const int pos = ix + iy*n;
/* handle this in idct_ComputeWeightsKernel
// Compute precorrection factor
ww[0].x = ww[0].x / sqrtf(2);
ww[0].y = ww[0].y / sqrtf(2);
*/
complex temp1, temp2;
temp1 = ww[iy];
temp2.x = temp1.x * b[pos];
temp2.y = temp1.y * b[pos];
y[iy + ix*m] = temp2;
}
__global__
void Reordering_a0_Kernel(complex *y, const int n, const int m, complex *yy)
{
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
if (ix >= n || iy >= m) return;
const int pos = ix + iy*n;
complex temp1, temp2;
temp1 = y[pos];
temp2.x = temp1.x / (float) n;
temp2.y = temp1.y / (float) n;
yy[iy + ix*n] = temp2;
}
__global__
void Reordering_a_Kernel(complex *yy, const int n, const int m, float *a)
{
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
if (ix >= n || iy >= m) return;
const int pos = ix + iy*n;
// Re-order elements of each column according to equations (5.93) and (5.94) in Jain
if (iy < n/2)
{
a[ix + 2*iy*n] = yy[pos].x;
a[ix + (2*iy+1)*n] = yy[ix + (m-iy-1)*n].x;
}
}
/**
* a = idct(b), where a is of size [n m].
* #param b, input array
* #param n, first dimension of a
* #param m, second dimension of a
* #param a, output array
*/
void cuIDCT(float *h_in, int n, int m, float *h_out) // a is of size [n m]
{
const int data_size = n * m * sizeof(float);
// device memory allocation
float *d_in, *d_out;
checkCudaErrors(cudaMalloc(&d_in, data_size));
checkCudaErrors(cudaMalloc(&d_out, data_size));
// transfer data from host to device
checkCudaErrors(cudaMemcpy(d_in, h_in, data_size, cudaMemcpyHostToDevice));
// compute IDCT using CUDA
// begin============================================
// Compute weights
complex *ww;
checkCudaErrors(cudaMalloc(&ww, n*sizeof(complex)));
dim3 threads(256);
dim3 blocks(iDivUp(n, threads.x));
idct_ComputeWeightsKernel<<<blocks, threads>>>(n, ww);
complex *y;
complex *yy;
cufftHandle plan;
dim3 threads1(32, 6);
dim3 blocks2(iDivUp(n, threads1.x), iDivUp(m, threads1.y)); // for even case
int Length[1] = {m}; // for each IFFT, the length is m
checkCudaErrors(cudaMalloc(&y, n*m*sizeof(complex)));
idct_ComputeEvenKernel<<<blocks2, threads1>>>(d_in, n, m, ww, y);
cufftSafeCall(cufftPlanMany(&plan, 1, Length,
Length, 1, m,
Length, 1, m, CUFFT_C2C, n));
cufftSafeCall(cufftExecC2C(plan, y, y, CUFFT_INVERSE)); // y is of size [n m]
checkCudaErrors(cudaMalloc(&yy, n*m*sizeof(complex)));
Reordering_a0_Kernel<<<blocks2, threads1>>>(y, n, m, yy);
cudaMemset(d_out, 0, data_size);
Reordering_a_Kernel<<<blocks2, threads1>>>(yy, n, m, d_out);
// end============================================
// transfer result from device to host
checkCudaErrors(cudaMemcpy(h_out, d_out, data_size, cudaMemcpyDeviceToHost));
// cleanup
cufftDestroy(plan);
checkCudaErrors(cudaFree(ww));
checkCudaErrors(cudaFree(y));
checkCudaErrors(cudaFree(yy));
checkCudaErrors(cudaFree(d_in));
checkCudaErrors(cudaFree(d_out));
}
You'll note I threw an extra cudaMemset on d_out in there, because it helped me clean up an issue with cuda-memcheck --tool initcheck .... It shouldn't be necessary, you can delete it if you want.

How to implement the Softmax derivative independently from any loss function?

For a neural networks library I implemented some activation functions and loss functions and their derivatives. They can be combined arbitrarily and the derivative at the output layers just becomes the product of the loss derivative and the activation derivative.
However, I failed to implement the derivative of the Softmax activation function independently from any loss function. Due to the normalization i.e. the denominator in the equation, changing a single input activation changes all output activations and not just one.
Here is my Softmax implementation where the derivative fails the gradient checking by about 1%. How can I implement the Softmax derivative so that it can be combined with any loss function?
import numpy as np
class Softmax:
def compute(self, incoming):
exps = np.exp(incoming)
return exps / exps.sum()
def delta(self, incoming, outgoing):
exps = np.exp(incoming)
others = exps.sum() - exps
return 1 / (2 + exps / others + others / exps)
activation = Softmax()
cost = SquaredError()
outgoing = activation.compute(incoming)
delta_output_layer = activation.delta(incoming) * cost.delta(outgoing)
Mathematically, the derivative of Softmax σ(j) with respect to the logit Zi (for example, Wi*X) is
where the red delta is a Kronecker delta.
If you implement iteratively:
def softmax_grad(s):
# input s is softmax value of the original input x. Its shape is (1,n)
# i.e. s = np.array([0.3,0.7]), x = np.array([0,1])
# make the matrix whose size is n^2.
jacobian_m = np.diag(s)
for i in range(len(jacobian_m)):
for j in range(len(jacobian_m)):
if i == j:
jacobian_m[i][j] = s[i] * (1 - s[i])
else:
jacobian_m[i][j] = -s[i] * s[j]
return jacobian_m
Test:
In [95]: x
Out[95]: array([1, 2])
In [96]: softmax(x)
Out[96]: array([ 0.26894142, 0.73105858])
In [97]: softmax_grad(softmax(x))
Out[97]:
array([[ 0.19661193, -0.19661193],
[-0.19661193, 0.19661193]])
If you implement in a vectorized version:
soft_max = softmax(x)
# reshape softmax to 2d so np.dot gives matrix multiplication
def softmax_grad(softmax):
s = softmax.reshape(-1,1)
return np.diagflat(s) - np.dot(s, s.T)
softmax_grad(soft_max)
#array([[ 0.19661193, -0.19661193],
# [-0.19661193, 0.19661193]])
It should be like this: (x is the input to the softmax layer and dy is the delta coming from the loss above it)
dx = y * dy
s = dx.sum(axis=dx.ndim - 1, keepdims=True)
dx -= y * s
return dx
But the way you compute the error should be:
yact = activation.compute(x)
ycost = cost.compute(yact)
dsoftmax = activation.delta(x, cost.delta(yact, ycost, ytrue))
Explanation: Because the delta function is a part of the backpropagation algorithm, its responsibility is to multiply the vector dy (in my code, outgoing in your case) by the Jacobian of the compute(x) function evaluated at x. If you work out what does this Jacobian look like for softmax [1], and then multiply it from the left by a vector dy, after a bit of algebra you'll find out that you get something that corresponds to my Python code.
[1] https://stats.stackexchange.com/questions/79454/softmax-layer-in-a-neural-network
The other answers are great, here to share a simple implementation of forward/backward, regardless of loss functions.
In the image below, it is a brief derivation of the backward for softmax. The 2nd equation is loss function dependent, not part of our implementation.
backward verified by manual grad checking.
import numpy as np
class Softmax:
def forward(self, x):
mx = np.max(x, axis=1, keepdims=True)
x = x - mx # log-sum-exp trick
e = np.exp(x)
probs = e / np.sum(np.exp(x), axis=1, keepdims=True)
return probs
def backward(self, x, probs, bp_err):
dim = x.shape[1]
output = np.empty(x.shape)
for j in range(dim):
d_prob_over_xj = - (probs * probs[:,[j]]) # i.e. prob_k * prob_j, no matter k==j or not
d_prob_over_xj[:,j] += probs[:,j] # i.e. when k==j, +prob_j
output[:,j] = np.sum(bp_err * d_prob_over_xj, axis=1)
return output
def compute_manual_grads(x, pred_fn):
eps = 1e-3
batch_size, dim = x.shape
grads = np.empty(x.shape)
for i in range(batch_size):
for j in range(dim):
x[i,j] += eps
y1 = pred_fn(x)
x[i,j] -= 2*eps
y2 = pred_fn(x)
grads[i,j] = (y1 - y2) / (2*eps)
x[i,j] += eps
return grads
def loss_fn(probs, ys, loss_type):
batch_size = probs.shape[0]
# dummy mse
if loss_type=="mse":
loss = np.sum((np.take_along_axis(probs, ys.reshape(-1,1), axis=1) - 1)**2) / batch_size
values = 2 * (np.take_along_axis(probs, ys.reshape(-1,1), axis=1) - 1) / batch_size
# cross ent
if loss_type=="xent":
loss = - np.sum( np.take_along_axis(np.log(probs), ys.reshape(-1,1), axis=1) ) / batch_size
values = -1 / np.take_along_axis(probs, ys.reshape(-1,1), axis=1) / batch_size
err = np.zeros(probs.shape)
np.put_along_axis(err, ys.reshape(-1,1), values, axis=1)
return loss, err
if __name__ == "__main__":
batch_size = 10
dim = 5
x = np.random.rand(batch_size, dim)
ys = np.random.randint(0, dim, batch_size)
for loss_type in ["mse", "xent"]:
S = Softmax()
probs = S.forward(x)
loss, bp_err = loss_fn(probs, ys, loss_type)
grads = S.backward(x, probs, bp_err)
def pred_fn(x, ys):
pred = S.forward(x)
loss, err = loss_fn(pred, ys, loss_type)
return loss
manual_grads = compute_manual_grads(x, lambda x: pred_fn(x, ys))
# compare both grads
print(f"loss_type = {loss_type}, grad diff = {np.sum((grads - manual_grads)**2) / batch_size}")
Just in case you are processing in batches, here is an implementation in NumPy (tested vs TensorFlow). However, I will suggest avoiding the associated tensor operations, by mixing the jacobian with the cross-entropy, which leads to a very simple and efficient expression.
def softmax(z):
exps = np.exp(z - np.max(z))
return exps / np.sum(exps, axis=1, keepdims=True)
def softmax_jacob(s):
return np.einsum('ij,jk->ijk', s, np.eye(s.shape[-1])) \
- np.einsum('ij,ik->ijk', s, s)
def np_softmax_test(z):
return softmax_jacob(softmax(z))
def tf_softmax_test(z):
z = tf.constant(z, dtype=tf.float32)
with tf.GradientTape() as g:
g.watch(z)
a = tf.nn.softmax(z)
jacob = g.batch_jacobian(a, z)
return jacob.numpy()
z = np.random.randn(3, 5)
np.all(np.isclose(np_softmax_test(z), tf_softmax_test(z)))
Here is a c++ vectorized version, using intrinsics ( 22 times (!) faster than the non-SSE version):
// How many floats fit into __m256 "group".
// Used by vectors and matrices, to ensure their dimensions are appropriate for
// intrinsics.
// Otherwise, consecutive rows of matrices will not be 16-byte aligned, and
// operations on them will be incorrect.
#define F_MULTIPLE_OF_M256 8
//check to quickly see if your rows are divisible by m256.
//you can 'undefine' to save performance, after everything was verified to be correct.
#define ASSERT_THE_M256_MULTIPLES
#ifdef ASSERT_THE_M256_MULTIPLES
#define assert_is_m256_multiple(x) assert( (x%F_MULTIPLE_OF_M256) == 0)
#else
#define assert_is_m256_multiple (q)
#endif
// usually used at the end of our Reduce functions,
// where the final __m256 mSum needs to be collapsed into 1 scalar.
static inline float slow_hAdd_ps(__m256 x){
const float *sumStart = reinterpret_cast<const float*>(&x);
float sum = 0.0f;
for(size_t i=0; i<F_MULTIPLE_OF_M256; ++i){
sum += sumStart[i];
}
return sum;
}
f_vec SoftmaxGrad_fromResult(const float *softmaxResult, size_t size,
const float *gradFromAbove){//<--gradient vector, flowing into us from the above layer
assert_is_m256_multiple(size);
//allocate vector, where to store output:
f_vec grad_v(size, true);//true: skip filling with zeros, to save performance.
const __m256* end = (const __m256*)(softmaxResult + size);
for(size_t i=0; i<size; ++i){// <--for every row
//go through this i'th row:
__m256 sum = _mm256_set1_ps(0.0f);
const __m256 neg_sft_i = _mm256_set1_ps( -softmaxResult[i] );
const __m256 *s = (const __m256*)softmaxResult;
const __m256 *gAbove = (__m256*)gradFromAbove;
for (s; s<end; ){
__m256 mul = _mm256_mul_ps(*s, neg_sft_i); // sftmaxResult_j * (-sftmaxResult_i)
mul = _mm256_mul_ps( mul, *gAbove );
sum = _mm256_add_ps( sum, mul );//adding to the total sum of this row.
++s;
++gAbove;
}
grad_v[i] = slow_hAdd_ps( sum );//collapse the sum into 1 scalar (true sum of this row).
}//end for every row
//reset back to start and subtract a vector, to account for Kronecker delta:
__m256 *g = (__m256*)grad_v._contents;
__m256 *s = (__m256*)softmaxResult;
__m256 *gAbove = (__m256*)gradFromAbove;
for(s; s<end; ){
__m256 mul = _mm256_mul_ps(*s, *gAbove);
*g = _mm256_add_ps( *g, mul );
++s;
++g;
}
return grad_v;
}
If for some reason somebody wants a simple (non-SSE) version, here it is:
inline static void SoftmaxGrad_fromResult_nonSSE(const float* softmaxResult,
const float *gradFromAbove, //<--gradient vector, flowing into us from the above layer
float *gradOutput,
size_t count ){
// every pre-softmax element in a layer contributed to the softmax of every other element
// (it went into the denominator). So gradient will be distributed from every post-softmax element to every pre-elem.
for(size_t i=0; i<count; ++i){
//go through this i'th row:
float sum = 0.0f;
const float neg_sft_i = -softmaxResult[i];
for(size_t j=0; j<count; ++j){
float mul = gradFromAbove[j] * softmaxResult[j] * neg_sft_i;
sum += mul;//adding to the total sum of this row.
}
//NOTICE: equals, overwriting any old values:
gradOutput[i] = sum;
}//end for every row
for(size_t i=0; i<count; ++i){
gradOutput[i] += softmaxResult[i] * gradFromAbove[i];
}
}

Cuda matrix multiplication results differs from MATLAB

Its been two days and I am still cant figure it out why my implementation of CUDA matrix multiplication differs from the results produced in MATLAB.
CUDA kernel: A(200x60000) = W(200x784) * Data(784x6000)
__global__ void CalculateA(Matrix W, Matrix Data, Matrix A)
{
int Row = blockIdx.y * blockDim.y + threadIdx.y;
int Col = blockIdx.x * blockDim.x + threadIdx.x;
if ((Row < W.row) && (Col < Data.col)){
float Cvalue = 0.0;
for (int i = 0; i < W.col; ++i){
Cvalue += W.elements[Row*W.col+i] * Data.elements[i*Data.col+Col];
}
A.elements[Row*A.col+Col] = Cvalue;
}
}
And calling the kernel:
void myFunc(Matrix W1, Matrix data){
Matrix d_W1, d_data, d_a2, a2;
size_t size;
a2.row = W1.row; d_a2.row = a2.row;
a2.col = data.col; d_a2.col = a2.col;
size = a2.col*a2.row*sizeof(float);
cudaMalloc(&d_a2.elements,size);
d_W1.row = W1.row; d_W1.col = W1.col;
size = W1.col*W1.row*sizeof(float);
cudaMalloc(&d_W1.elements,size);
cudaMemcpy(d_W1.elements,W1.elements,size,cudaMemcpyHostToDevice);
d_data.col = data.col; d_data.row = data.row;
size = data.row*data.col*sizeof(float);
cudaMalloc(&d_data.elements,size);
cudaMemcpy(d_data.elements,data.elements,size,cudaMemcpyHostToDevice);
dim3 dimGrid(data.col/32 + 1, W1.row/32 + 1, 1);
dim3 dimBlock(32, 32, 1);
CalculateA<<<dimGrid, dimBlock>>>(d_W1, d_data, d_a2);
a2.elements = new float [a2.row*a2.col];
cudaMemcpy(a2.elements,d_a2.elements,sizeof(float)*a2.row*a2.col,cudaMemcpyDeviceToHost);
printf("\nA2 first and last member %f - %f\n",a2.elements[0],a2.elements[a2.row*a2.col-1]);
}
Results difference is not low for example first and last elements of CUDA code is 0.011322 and -0.179534 but multiplying in MATLAB results in 0.4280 and 0.0056.
this is how I do it in MATLAB:
>> size(W1) ans = 200 784
>> size(data) ans = 784 60000
>> z2=W1*data;
>> size(z2) ans = 200 60000
>> z2 = z2(:);
>> z2(1) ans = 0.4280
>> z2(200*60000)ans = 0.0056
There is nothing wrong with the code you posted. If I expand your kernel and function into a complete running example like this:
#include <iostream>
struct Matrix
{
int row;
int col;
float *elements;
__device__ __host__
float& operator()(int r, int c) { return elements[r*col + c]; };
};
__global__ void CalculateA(Matrix W, Matrix Data, Matrix A)
{
int Row = blockIdx.y * blockDim.y + threadIdx.y;
int Col = blockIdx.x * blockDim.x + threadIdx.x;
if ((Row < W.row) && (Col < Data.col)){
float Cvalue = 0.0;
for (int i = 0; i < W.col; ++i){
Cvalue += W.elements[Row*W.col+i] * Data.elements[i*Data.col+Col];
}
A.elements[Row*A.col+Col] = Cvalue;
}
}
void myFunc(Matrix W1, Matrix data)
{
Matrix d_W1, d_data, d_a2, a2;
size_t size;
a2.row = W1.row; d_a2.row = a2.row;
a2.col = data.col; d_a2.col = a2.col;
size = a2.col*a2.row*sizeof(float);
cudaMalloc(&d_a2.elements,size);
d_W1.row = W1.row; d_W1.col = W1.col;
size = W1.col*W1.row*sizeof(float);
cudaMalloc(&d_W1.elements,size);
cudaMemcpy(d_W1.elements,W1.elements,size,cudaMemcpyHostToDevice);
d_data.col = data.col; d_data.row = data.row;
size = data.row*data.col*sizeof(float);
cudaMalloc(&d_data.elements,size);
cudaMemcpy(d_data.elements,data.elements,size,cudaMemcpyHostToDevice);
dim3 dimGrid(data.col/32 + 1, W1.row/32 + 1, 1);
dim3 dimBlock(32, 32, 1);
CalculateA<<<dimGrid, dimBlock>>>(d_W1, d_data, d_a2);
a2.elements = new float [a2.row*a2.col];
cudaMemcpy(a2.elements,d_a2.elements,sizeof(float)*a2.row*a2.col,cudaMemcpyDeviceToHost);
for(int j=0; j<a2.col; ++j) {
for(int i=0; i<a2.row; ++i) {
std::cout << a2(i,j) << " ";
}
std::cout << std::endl;
}
}
int main(void)
{
float a[6] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f };
float b[6] = { 0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f};
Matrix W1; W1.row=2; W1.col=3; W1.elements = &a[0];
Matrix Data; Data.row=3; Data.col=2; Data.elements = &b[0];
myFunc(W1, Data);
return 0;
}
and run it, I get this:
>nvcc -arch=sm_21 -Xptxas="-v" -m32 matrix.cu
matrix.cu
tmpxft_000014f4_00000000-5_matrix.cudafe1.gpu
tmpxft_000014f4_00000000-10_matrix.cudafe2.gpu
matrix.cu
ptxas : info : 132 bytes gmem, 28 bytes cmem[14]
ptxas : info : Compiling entry function '_Z10CalculateA6MatrixS_S_' for 'sm_21'
ptxas : info : Function properties for _Z10CalculateA6MatrixS_S_
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas : info : Used 14 registers, 68 bytes cmem[0]
tmpxft_000014f4_00000000-5_matrix.cudafe1.cpp
tmpxft_000014f4_00000000-15_matrix.ii
>cuda-memcheck a.exe
========= CUDA-MEMCHECK
2.2 4.9
2.8 6.4
========= ERROR SUMMARY: 0 errors
which is the correct answer for the dot product assuming column major ordering (which is the Matlab convention).
So if your results don't agree, it is because of something you haven't shown us. One likelihood is that your test problem is so large (and kernel so inefficient) that if you are running this on a display GPU, your program is hitting the display driver watchdog timer limit and being killed before the kernel finishes running. Also note that you have no CUDA API error checking whatsoever, so it is possible that you are getting runtime errors which is either stopping your kernel from finishing or even running at all, but you simply don't notice because of the lack of error checking.

Using Thrust library of CUDA for large values

Hi I wanted to implement a loop which is extremely large in thrust but i find it much slower than normal C++ code. Can you please tell me where am i going wrong.
fi and fj are host vectors
xsize usually is around a 7-8 digit number
thrust::host_vector <double> df((2*floor(r)*(floor(r)+1)+1)*n*n);
thrust::device_vector<double> gpu_df((2*floor(r)*(floor(r)+1)+1)*n*n);
for(i=0;i<xsize;i++)
{
gpu_df[i]=(fi[i]-fj[i]);
if(gpu_df[i]<0)
gpu_df[i]=0;
else
gpu_df[i]=gpu_df[i]*(fi[i]-fj[i]);
if(gpu_df[i]>255)
gpu_df[i]=255;
// cout<<fi[i]<<"\n";
}
df=gpu_df;
I feel the code is not being parallelized. Could you please help me out.
To run programs on the GPU with Thrust you need to write them in terms of Thrust algorithms like reduce, transform, sort, etc. In this case we can write the computation in terms of transform, since the loop was just computing a function F(fi[i], fj[i]) and storing the result in df[i]. Note that we must first move the input arrays to the device before calling transform because Thrust requires the input and output arrays to live in the same place.
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/functional.h>
#include <cstdio>
struct my_functor
: public thrust::binary_function<float,float,float>
{
__host__ __device__
float operator()(float fi, float fj)
{
float d = fi - fj;
if (d < 0)
d = 0;
else
d = d * d;
if (d > 255)
d = 255;
return d;
}
};
int main(void)
{
size_t N = 5;
// allocate storage on host
thrust::host_vector<float> cpu_fi(N);
thrust::host_vector<float> cpu_fj(N);
thrust::host_vector<float> cpu_df(N);
// initialze fi and fj arrays
cpu_fi[0] = 2.0; cpu_fj[0] = 0.0;
cpu_fi[1] = 0.0; cpu_fj[1] = 2.0;
cpu_fi[2] = 3.0; cpu_fj[2] = 1.0;
cpu_fi[3] = 4.0; cpu_fj[3] = 5.0;
cpu_fi[4] = 8.0; cpu_fj[4] = -8.0;
// copy fi and fj to device
thrust::device_vector<float> gpu_fi = cpu_fi;
thrust::device_vector<float> gpu_fj = cpu_fj;
// allocate storage for df
thrust::device_vector<float> gpu_df(N);
// perform transformation
thrust::transform(gpu_fi.begin(), gpu_fi.end(), // first input range
gpu_fj.begin(), // second input range
gpu_df.begin(), // output range
my_functor()); // functor to apply
// copy results back to host
thrust::copy(gpu_df.begin(), gpu_df.end(), cpu_df.begin());
// print results on host
for (size_t i = 0; i < N; i++)
printf("f(%2.0lf,%2.0lf) = %3.0lf\n", cpu_fi[i], cpu_fj[i], cpu_df[i]);
return 0;
}
For reference, here's the output of the program:
f( 2, 0) = 4
f( 0, 2) = 0
f( 3, 1) = 4
f( 4, 5) = 0
f( 8,-8) = 255