Related
I am using MSP432P401R to do FFT of SAR ADC samples, did FFT in MATLAB and got results same as C compiler online but Code Composer Studio IDE is giving different output than MATLAB results, I thought that can be a compiler issue so tried reading same did some changes and tried but not getting results Like MATLAB.
Online C compiler was gcc 5.4.1 c99.
and in CCS TI v5.2.5 compiler is used.
float m;
float ur, ui, sr, si,tr, ti;
long double Temp_A[256],ArrayA[256]={2676,2840,2838,2832,2826,2818,2814,2808,
2804,2798,2790,2784,2778,2770,2764,2758,2752,2746,2740,2734,
2726,2720,2714,2706,2700,2692,2686,2680,2674,2668,2660,2654,
2646,2642,2634,2624,2618,2612,2604,2598,2590,2584,2576,2570,
2562,2556,2550,2542,2536,2530,2522,2512,2508,2498,2490,2484,
2478,2470,2462,2454,2448,2442,2432,2426,2420,2414,2404,2398,
2390,2382,2374,2368,2360,2352,2346,2338,2330,2322,2314,2306,
2300,2294,2286,2278,2272,2262,2258,2250,2238,2234,2228,2220,
2208,2202,2192,2186,2178,2170,2164,2156,2150,2142,2134,2126,
2116,2110,2104,2096,2088,2078,2070,2062,2054,2046,2040,2034,
2026,2018,2010,2002,1994,1986,1978,1970,1962,1954,1946,1936,
1930,1922,1914,1908,1902,1894,1886,1876,1868,1860,1852,1846,
1838,1830,1822,1814,1804,1796,1790,1784,1776,1768,1760,1754,
1746,1738,1728,1720,1714,1708,1698,1692,1684,1674,1668,1656,
1656,1644,1640,1628,1624,1612,1610,1598,1596,1584,1580,1570,
1564,1554,1546,1540,1532,1526,1520,1512,1504,1496,1490,1482,
1474,1468,1462,1454,1446,1438,1432,1424,1420,1410,1404,1398,
1392,1384,1376,1370,1364,1356,1348,1342,1336,1328,1322,1316,
1308,1300,1294,1286,1280,1276,1270,1262,1254,1248,1242,1236,
1230,1222,1216,1210,1206,1198,1192,1188,1178,1172,1168,1162,
1154,1148,1144,1138,1132,1126,1120,1114,1108,1102,1096,1090,
1084,1080,1074,1068,1062,1058,1052,1048},ArrayA_IMX[256]={0};
unsigned int jm1,i;
unsigned int ip,l;
void main(void)
{
WDT_A->CTL = WDT_A_CTL_PW |WDT_A_CTL_HOLD;
VCORE();
CLK();
P1DIR |= BIT5; //CLK--AD7352 OUTPUT DIRECTION
P1DIR |= BIT7; //CHIP SELECT--AD7352 OUTPUT DIRECTION
P5DIR &= ~BIT0; //SDATAA--AD7352 INPUT DIRECTION P5.0
P5DIR &= ~BIT2; //SDATAB--AD7352 INPUT DIRECTION P5.2
while(1)
{
bit_reversal(ArrayA);
fft(ArrayA,ArrayA_IMX);
}
}
void bit_reversal(long double REX[])
{
int i,i2,n,m;
int tx,k,j;
n = 1;
m=8;
for (i=0;i<m;i++)
{
n *= 2;
}
i2 = n >> 1;
j = 0;
for (i=0;i<n-1;i++)
{
if (i < j)
{
tx = REX[i];
//ty = IMX[i];
REX[i] = REX[j];
//IMX[i] = IMX[j];
REX[j] = tx;
//IMX[j] = ty;
}
k = i2;
while (k <= j)
{
j -= k;
k >>= 1;
}
j += k;
}
}
void fft(long double REX[],long double IMX[])
{
N = 256;
nm1 = N - 1;
nd2 = N / 2;
m = log10l(N) / log10l(2);
j = nd2;
for (l = 1; l <= m; l++)
{
le = powl(2, l);
le2 = le / 2;
ur = 1;
ui = 0;
// Calculate sine and cosine values
sr = cosl(M_PI/le2);
si = -sinl(M_PI/le2);
// Loop for each sub DFT
for (j = 1; j <= le2; j++)
{
jm1 = j - 1;
// Loop for each butterfly
for (i = jm1; i <= nm1; i += le)
{
ip = i + le2;
tr = REX[ip]*ur - IMX[ip]*ui;
ti = REX[ip]*ui + IMX[ip]*ur;
REX[ip] = REX[i] - tr;
IMX[ip] = IMX[i] - ti;
REX[i] = REX[i] + tr;
IMX[i] = IMX[i] + ti;
}
tr = ur;
ur = tr*sr - ui*si;
ui = tr*si + ui*sr;
}
}
}
I have implemented a CUDA version of inverse discrete cosine transform (IDCT), by "translating" the MATLAB built-in function idct.m into CUDA:
My implementation is cuIDCT.cu, works when m = n and both m and n are even numbers.
cuIDCT.cu
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <cufft.h>
#include <cuComplex.h>
// round up n/m
inline int iDivUp(int n, int m)
{
return (n + m - 1) / m;
}
typedef cufftComplex complex;
#define PI 3.1415926535897932384626433832795028841971693993751
__global__
void idct_ComputeWeightsKernel(const int n, complex *ww)
{
const int pos = threadIdx.x + blockIdx.x * blockDim.x;
if (pos >= n) return;
ww[pos].x = sqrtf(2*n) * cosf(pos*PI/(2*n));
ww[pos].y = sqrtf(2*n) * sinf(pos*PI/(2*n));
}
__global__
void idct_ComputeEvenKernel(const float *b, const int n, const int m, complex *ww, complex *y)
{
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
if (ix >= n || iy >= m) return;
const int pos = ix + iy*n;
// Compute precorrection factor
ww[0].x = ww[0].x / sqrtf(2);
ww[0].y = ww[0].y / sqrtf(2);
y[iy + ix*m].x = ww[iy].x * b[pos];
y[iy + ix*m].y = ww[iy].y * b[pos];
}
__global__
void Reordering_a0_Kernel(complex *y, const int n, const int m, complex *yy)
{
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
if (ix >= n || iy >= m) return;
const int pos = ix + iy*n;
yy[iy + ix*n].x = y[pos].x / (float) n;
yy[iy + ix*n].y = y[pos].y / (float) n;
}
__global__
void Reordering_a_Kernel(complex *yy, const int n, const int m, float *a)
{
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
if (ix >= n || iy >= m) return;
const int pos = ix + iy*n;
// Re-order elements of each column according to equations (5.93) and (5.94) in Jain
if (iy < n/2)
{
a[ix + 2*iy*n] = yy[pos].x;
a[ix + (2*iy+1)*n] = yy[ix + (m-iy-1)*n].x;
}
}
/**
* a = idct(b), where a is of size [n m].
* #param b, input array
* #param n, first dimension of a
* #param m, second dimension of a
* #param a, output array
*/
void cuIDCT(float *h_in, int n, int m, float *h_out) // a is of size [n m]
{
const int data_size = n * m * sizeof(float);
// device memory allocation
float *d_in, *d_out;
cudaMalloc(&d_in, data_size);
cudaMalloc(&d_out, data_size);
// transfer data from host to device
cudaMemcpy(d_in, h_in, data_size, cudaMemcpyHostToDevice);
// compute IDCT using CUDA
// begin============================================
// Compute weights
complex *ww;
cudaMalloc(&ww, n*sizeof(complex));
dim3 threads(256);
dim3 blocks(iDivUp(n, threads.x));
idct_ComputeWeightsKernel<<<blocks, threads>>>(n, ww);
complex *y;
complex *yy;
cufftHandle plan;
dim3 threads1(32, 6);
dim3 blocks2(iDivUp(n, threads1.x), iDivUp(m, threads1.y)); // for even case
int Length[1] = {m}; // for each IFFT, the length is m
cudaMalloc(&y, n*m*sizeof(complex));
idct_ComputeEvenKernel<<<blocks2, threads1>>>(d_in, n, m, ww, y);
cufftPlanMany(&plan, 1, Length,
Length, 1, m,
Length, 1, m, CUFFT_C2C, n);
cufftExecC2C(plan, y, y, CUFFT_INVERSE); // y is of size [n m]
cudaMalloc(&yy, n*m*sizeof(complex));
Reordering_a0_Kernel<<<blocks2, threads1>>>(y, n, m, yy);
Reordering_a_Kernel<<<blocks2, threads1>>>(yy, n, m, d_out);
// end============================================
// transfer result from device to host
cudaMemcpy(h_out, d_out, data_size, cudaMemcpyDeviceToHost);
// cleanup
cufftDestroy(plan);
cudaFree(ww);
cudaFree(y);
cudaFree(yy);
cudaFree(d_in);
cudaFree(d_out);
}
Then I compared the result of my CUDA IDCT (i.e. cuIDCT.cu) against MATLAB idct.m using following code:
a test main.cpp function, and
a MATLAB main function main.m to read result from CUDA and compare it against MATLAB.
main.cpp
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <helper_functions.h>
#include <stdlib.h>
#include <stdio.h>
// N must equal to M, and both must be even numbers
#define N 256
#define M 256
void WriteDataFile(const char *name, int w, int h, const float *in, const float *out)
{
FILE *stream;
stream = fopen(name, "wb");
float data = 202021.25f;
fwrite(&data, sizeof(float), 1, stream);
fwrite(&w, sizeof(w), 1, stream);
fwrite(&h, sizeof(h), 1, stream);
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)
{
const int pos = j + i * h;
fwrite(in + pos, sizeof(float), 1, stream);
fwrite(out + pos, sizeof(float), 1, stream);
}
fclose(stream);
}
void cuIDCT(float *b, int n, int m, float *a);
int main()
{
// host memory allocation
float *h_in = new float [N * M];
float *h_out = new float [N * M];
float *h_temp = new float [N * M];
// input data initialization
for (int i = 0; i < N * M; i++)
{
h_in[i] = (float)rand()/(float)RAND_MAX;
h_out[i] = h_in[i];
h_temp[i] = h_in[i];
}
// please comment either one case for testing
// test case 1: use cuIDCT.cu once
// cuIDCT(h_in, N, M, h_out);
// test case 2: iteratively use cuIDCT.cu
for (int i = 0; i < 4; i++)
{
if (i % 2 == 0)
cuIDCT(h_out, N, M, h_temp);
else
cuIDCT(h_temp, N, M, h_out);
}
// write data, for further visualization using MATLAB
WriteDataFile("test.flo", N, M, h_in, h_out);
// cleanup
delete [] h_in;
delete [] h_out;
delete [] h_temp;
cudaDeviceReset();
}
main.m
clc;clear;
% read
[h_in, h_out] = read_data('test.flo');
% MATLAB result, for test case 1, comment the for-loop
matlab_out = h_in;
for i = 1:4
matlab_out = idct(matlab_out);
end
% compare
err = matlab_out - h_out;
% show
figure(1);
subplot(221); imshow(h_in, []); title('h\_in'); colorbar
subplot(222); imshow(h_out, []); title('h\_out'); colorbar
subplot(223); imshow(matlab_out, []); title('matlab\_out'); colorbar
subplot(224); imshow(err, []); title('error map'); colorbar
disp(['maximum error between CUDA and MATLAB is ' ...
num2str(max(max(abs(err))))])
I ran the code on Visual Studio 11 (i.e. VS2012) in Windows 7 with Nvidia GPU Tesla K20c, using CUDA Toolkit version 7.5, and my MATLAB version is R2015b.
My test steps:
For test case 1. Un-comment test case 1 and comment test case 2.
Run main.cpp.
Run main.m in MATLAB.
Repeat step 1 and step 2 (without any change, just re-run the code).
I repeated step 3 for 20 times. The output result is unchanged, and results in main.m are:
results of test case 1
The maximum error is 7.7152e-07.
For test case 2. Un-comment test case 2 and comment test case 1.
Run main.cpp.
Run main.m in MATLAB.
Repeat step 1 and step 2 (without any change, just re-run the code).
I repeated step 3 for 20 times. The output result is changed, and results in main.m are (not enough reputation to put all images, only wrong case is shown below):
one situation (the wrong one) of test case 2
The maximum error is 0.45341 (2 times), 0.44898 (1 time), 0.26186 (1 time), 0.26301 (1 time), and 9.5716e-07 (15 times).
From the test results, my conclusion is:
From test case 1: cuIDCT.cu is numerically correct (error ~10^-7) to idct.m.
From test case 2: recursively use of cuIDCT.cu leads to unstable result (i.e. the output changes every time when re-run the code and may sometimes be numerically wrong, error ~0.1)
My question:
From test case 1 we know cuIDCT.cu is numerically correct to idct.m. But why recursiviely use of cuIDCT.cu leads to different output result each time when re-run the code?
Any helps or suggestions are highly appreciated.
I believe the variability in your results is coming about due to this code in your idct_ComputeEvenKernel:
// Compute precorrection factor
ww[0].x = ww[0].x / sqrtf(2);
ww[0].y = ww[0].y / sqrtf(2);
It's not entirely clear what your intent is here, but it's doubtful that this code could be doing what you want. You may be confused about the CUDA execution model.
The above code will be executed by every CUDA thread that you launch for that kernel that passes the thread check:
if (ix >= n || iy >= m) return;
I believe this means 65536 threads will all execute this code in that kernel. Furthermore, the threads will execute that code in more-or-less any order (not all CUDA threads execute in lock-step). They may even step on each other as they are trying to write out their values to the location ww[0]. So the final result in ww[0] will be quite unpredictable.
When I comment out those lines of code, the results become stable for me (albeit different from what they were with those lines in place), unchanging from run to run.
I'd like to point something else out. Wherever you are calculating the .x and .y values of a complex quantity, my suggestion would be to rework the code from this (for example):
y[iy + ix*m].x = ww[iy].x * b[pos];
y[iy + ix*m].y = ww[iy].y * b[pos];
to this:
complex temp1, temp2;
temp1 = ww[iy];
temp2.x = temp1.x * b[pos];
temp2.y = temp2.y * b[pos];
y[iy + ix*m] = temp2;
At least according to my testing, the compiler doesn't seem to be making this optimization for you, and one side-effect benefit is that it's much easier to test your code with cuda-memcheck --tool initcheck .... In the first realization, the compiler will load y[iy + ix*m] as an 8 byte quantity, modify either 4 or 8 bytes of it, then store y[iy + ix*m] as an 8 byte quantity. The second realization should be more efficient (it eliminates the load of y[]), and eliminates the load of an uninitialized quantity (y[]), which the cuda-memcheck tool will report as a hazard.
This variability I'm describing should be possible whether you run either the 1-pass version of your code or the 4-pass version of your code. Therefore I think your statements about the 1-pass version being correct are suspect. I think if you run the 1-pass version enough, you will eventually see variability (although it may require varying initial memory conditions, or running on different GPU types). Even in your own results, we see that 15 out of 20 runs of the 4 pass code produce "correct" results, i.e. the residual error is ~1e-7
Here's my modified cuIDCT.cu file, modified from the version you posted here. The assumption I'm making below is that you wanted to compute the scaling on ww[0] only once, in which case we can easily handle that arithmetic as an addendum to the previous idct_ComputeWeightsKernel:
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <cufft.h>
#include <cuComplex.h>
#include <helper_cuda.h>
#include "assert.h"
// round up n/m
inline int iDivUp(int n, int m)
{
return (n + m - 1) / m;
}
typedef cufftComplex complex;
#define PI 3.1415926535897932384626433832795028841971693993751
#define cufftSafeCall(err) __cufftSafeCall(err, __FILE__, __LINE__)
inline void __cufftSafeCall(cufftResult err, const char *file, const int line)
{
if( CUFFT_SUCCESS != err) {
fprintf(stderr, "CUFFT error in file '%s', line %d\n %s\nerror %d: %s\nterminating!\n",__FILE__, __LINE__,err, \
_cudaGetErrorEnum(err)); \
cudaDeviceReset(); assert(0); \
}
}
__global__
void idct_ComputeWeightsKernel(const int n, complex *ww)
{
const int pos = threadIdx.x + blockIdx.x * blockDim.x;
if (pos >= n) return;
complex temp;
temp.x = sqrtf(2*n) * cosf(pos*PI/(2*n));
temp.y = sqrtf(2*n) * sinf(pos*PI/(2*n));
if (pos == 0) {
temp.x /= sqrtf(2);
temp.y /= sqrtf(2);}
ww[pos] = temp;
}
__global__
void idct_ComputeEvenKernel(const float *b, const int n, const int m, complex *ww, complex *y)
{
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
if (ix >= n || iy >= m) return;
const int pos = ix + iy*n;
/* handle this in idct_ComputeWeightsKernel
// Compute precorrection factor
ww[0].x = ww[0].x / sqrtf(2);
ww[0].y = ww[0].y / sqrtf(2);
*/
complex temp1, temp2;
temp1 = ww[iy];
temp2.x = temp1.x * b[pos];
temp2.y = temp1.y * b[pos];
y[iy + ix*m] = temp2;
}
__global__
void Reordering_a0_Kernel(complex *y, const int n, const int m, complex *yy)
{
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
if (ix >= n || iy >= m) return;
const int pos = ix + iy*n;
complex temp1, temp2;
temp1 = y[pos];
temp2.x = temp1.x / (float) n;
temp2.y = temp1.y / (float) n;
yy[iy + ix*n] = temp2;
}
__global__
void Reordering_a_Kernel(complex *yy, const int n, const int m, float *a)
{
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
if (ix >= n || iy >= m) return;
const int pos = ix + iy*n;
// Re-order elements of each column according to equations (5.93) and (5.94) in Jain
if (iy < n/2)
{
a[ix + 2*iy*n] = yy[pos].x;
a[ix + (2*iy+1)*n] = yy[ix + (m-iy-1)*n].x;
}
}
/**
* a = idct(b), where a is of size [n m].
* #param b, input array
* #param n, first dimension of a
* #param m, second dimension of a
* #param a, output array
*/
void cuIDCT(float *h_in, int n, int m, float *h_out) // a is of size [n m]
{
const int data_size = n * m * sizeof(float);
// device memory allocation
float *d_in, *d_out;
checkCudaErrors(cudaMalloc(&d_in, data_size));
checkCudaErrors(cudaMalloc(&d_out, data_size));
// transfer data from host to device
checkCudaErrors(cudaMemcpy(d_in, h_in, data_size, cudaMemcpyHostToDevice));
// compute IDCT using CUDA
// begin============================================
// Compute weights
complex *ww;
checkCudaErrors(cudaMalloc(&ww, n*sizeof(complex)));
dim3 threads(256);
dim3 blocks(iDivUp(n, threads.x));
idct_ComputeWeightsKernel<<<blocks, threads>>>(n, ww);
complex *y;
complex *yy;
cufftHandle plan;
dim3 threads1(32, 6);
dim3 blocks2(iDivUp(n, threads1.x), iDivUp(m, threads1.y)); // for even case
int Length[1] = {m}; // for each IFFT, the length is m
checkCudaErrors(cudaMalloc(&y, n*m*sizeof(complex)));
idct_ComputeEvenKernel<<<blocks2, threads1>>>(d_in, n, m, ww, y);
cufftSafeCall(cufftPlanMany(&plan, 1, Length,
Length, 1, m,
Length, 1, m, CUFFT_C2C, n));
cufftSafeCall(cufftExecC2C(plan, y, y, CUFFT_INVERSE)); // y is of size [n m]
checkCudaErrors(cudaMalloc(&yy, n*m*sizeof(complex)));
Reordering_a0_Kernel<<<blocks2, threads1>>>(y, n, m, yy);
cudaMemset(d_out, 0, data_size);
Reordering_a_Kernel<<<blocks2, threads1>>>(yy, n, m, d_out);
// end============================================
// transfer result from device to host
checkCudaErrors(cudaMemcpy(h_out, d_out, data_size, cudaMemcpyDeviceToHost));
// cleanup
cufftDestroy(plan);
checkCudaErrors(cudaFree(ww));
checkCudaErrors(cudaFree(y));
checkCudaErrors(cudaFree(yy));
checkCudaErrors(cudaFree(d_in));
checkCudaErrors(cudaFree(d_out));
}
You'll note I threw an extra cudaMemset on d_out in there, because it helped me clean up an issue with cuda-memcheck --tool initcheck .... It shouldn't be necessary, you can delete it if you want.
I have an image named HSIImage, of size is 565x585, in which I have find the local mean and standard deviation at every pixel. For this I am using a window W of size 9x9, if we a re finding the mean of x(i,j) we need values in the W where x(i,j) is at its center.
For working on the corner and edge pixels, I am padding the HSIImage and naming it as HSIImage2.
MATLAB code
[m,n,~] = size(HSIImage);
HSIImage2=padarray(HSIImage,[4,4],'symmetric');
mean1 = zeros(m,n);
sd = zeros(m,n);
phi_x=zeros(m,n);
for i=5:m+4
for j=5:n+4
mean1(i-4,j-4) = mean( mean(HSIImage2(i-4:i+4, j-4:j+4, 3) )); %sum / (4*4);
sd(i-4,j-4) = std( std(HSIImage2(i-4:i+4, j-4:j+4, 3), 1));
end
end
[phi_x2,mean2,sd2] = getPhi(HSIImage(:,:,3)',HSIImage2(:,:,3)',m,n);
Serial mean displayed as image.
My cuda code for finding mean and sd is
__global__ void phi(double *d_HSIImage,double *d_HSIImage2, int row, int col, double *d_phi_x, double *d_mean, double *d_std)
{
int X = blockDim.x * blockIdx.x + threadIdx.x;
int Y = blockDim.y * blockIdx.y + threadIdx.y;
int i,j;
double sum = 0;
if(Y>3 && X>3 && Y<row+4 && X<col+4)
{
for(i=Y-4;i<=Y+4;i++){
for(j=X-4;j<=X+4;j++){
sum= sum + d_HSIImage2[i*col+j];
}
}
d_mean[(Y-4)*col+X-4] = sum/81;
double mean = sum/81;
sum = 0;
for(i=Y-4;i<=Y+4;i++){
for(j=X-4;j<=X+4;j++){
int index = i*col+j;
sum= sum + (d_HSIImage2[index]-mean) * (d_HSIImage2[index]-mean);
}
}
d_std[(Y-4)*col+X-4] = sqrt(sum/81);
}
void mexFunction( int nlhs, mxArray *plhs[],int nrhs, const mxArray *prhs[])
{
double* HSIImage;
double* d_HSIImage;
double* HSIImage2;
double* d_HSIImage2;
double row;
double col;
double* phi_x;
double* d_phi_x;
double* mean2;
double* d_mean;
double* d_std;
double* sd2;
HSIImage = (double*)mxGetPr(prhs[0]);
HSIImage2 = (double*)mxGetPr(prhs[1]);
row = mxGetScalar(prhs[2]);
col = mxGetScalar(prhs[3]);
plhs[0] = mxCreateDoubleMatrix(row,col,mxREAL);
phi_x = mxGetPr(plhs[0]);
plhs[1] = mxCreateDoubleMatrix(row,col,mxREAL);
mean2 = mxGetPr(plhs[1]);
plhs[2] = mxCreateDoubleMatrix(row,col,mxREAL);
sd2 = mxGetPr(plhs[2]);
dim3 grid(((col+8)/TILE_WIDTH)+1,((row+8)/TILE_WIDTH)+1,1);
dim3 block(TILE_WIDTH,TILE_WIDTH,1);
if ( cudaMalloc(&d_HSIImage,sizeof(double)*row*col)!= cudaSuccess )
mexErrMsgTxt("Memory allocating failure on the GPU");
if ( cudaMalloc(&d_HSIImage2,sizeof(double)*(row+8)*(col+8))!= cudaSuccess )
mexErrMsgTxt("Memory allocating failure on the GPU");
if ( cudaMalloc(&d_phi_x,sizeof(double)*row*col)!= cudaSuccess )
mexErrMsgTxt("Memory allocating failure on the GPU");
if ( cudaMalloc(&d_mean,sizeof(double)*row*col)!= cudaSuccess )
mexErrMsgTxt("Memory allocating failure on the GPU");
if ( cudaMalloc(&d_std,sizeof(double)*row*col)!= cudaSuccess )
mexErrMsgTxt("Memory allocating failure on the GPU");
cudaMemcpy(d_HSIImage,HSIImage,sizeof(double)*row*col,cudaMemcpyHostToDevice);
cudaMemcpy(d_HSIImage2,HSIImage2,sizeof(double)*(row+8)*(col+8),cudaMemcpyHostToDevice);
phi <<< grid,block >>> (d_HSIImage,d_HSIImage2,row,col,d_phi_x,d_mean,d_std);
cudaMemcpy(phi_x,d_phi_x,sizeof(double)*row*col,cudaMemcpyDeviceToHost);
cudaMemcpy(mean2,d_mean,sizeof(double)*row*col,cudaMemcpyDeviceToHost);
cudaMemcpy(sd2,d_std,sizeof(double)*row*col,cudaMemcpyDeviceToHost);
cudaFree(d_HSIImage);
cudaFree(d_HSIImage2);
cudaFree(d_phi_x);
}
its working fine when image is full of ones. but when I give regular image, there is lot of difference in serial(MATLAB) and parallel(CUDA) outputs(When mean1 and mean2 are compared). Please tell me the error.
I am launching with
dim3 grid(((col+8)/TILE_WIDTH)+1,((row+8)/TILE_WIDTH)+1,1);
dim3 block(TILE_WIDTH,TILE_WIDTH,1);
TILEWIDTH is 32. row=565, col=584.
Parallel mean displayed as image
It is important to note Matlab's c api is column-major ordered, however as mentioned in the comments OP has made sure of the consistency. The problem is that the stride used to access the data did not include the pads of the image. Going from one row to another requires a stride of col+8 (8 being padding of 4 on each side.
changing
__global__ void phi(double *d_HSIImage,double *d_HSIImage2, int row, int col, double *d_phi_x, double *d_mean, double *d_std)
{
int X = blockDim.x * blockIdx.x + threadIdx.x;
int Y = blockDim.y * blockIdx.y + threadIdx.y;
int i,j;
double sum = 0;
if(Y>3 && X>3 && Y<row+4 && X<col+4)
{
for(i=Y-4;i<=Y+4;i++){
for(j=X-4;j<=X+4;j++){
sum= sum + d_HSIImage2[i*col+j];
}
}
d_mean[(Y-4)*col+X-4] = sum/81;
double mean = sum/81;
sum = 0;
for(i=Y-4;i<=Y+4;i++){
for(j=X-4;j<=X+4;j++){
int index = i*col+j;
sum= sum + (d_HSIImage2[index]-mean) * (d_HSIImage2[index]-mean);
}
}
d_std[(Y-4)*col+X-4] = sqrt(sum/81);
}
to
__global__ void phi(double *d_HSIImage,double *d_HSIImage2, int row, int col, double *d_phi_x, double *d_mean, double *d_std)
{
int X = blockDim.x * blockIdx.x + threadIdx.x;
int Y = blockDim.y * blockIdx.y + threadIdx.y;
int i,j;
double sum = 0;
if(Y>3 && X>3 && Y<row+4 && X<col+4)
{
for(i=Y-4;i<=Y+4;i++){
for(j=X-4;j<=X+4;j++){
sum= sum + d_HSIImage2[i*(col+8)+j];
}
}
d_mean[(Y-4)*col+X-4] = sum/81;
double mean = sum/81;
sum = 0;
for(i=Y-4;i<=Y+4;i++){
for(j=X-4;j<=X+4;j++){
int index = i*(col+8)+j;
sum= sum + (d_HSIImage2[index]-mean) * (d_HSIImage2[index]-mean);
}
}
d_std[(Y-4)*col+X-4] = sqrt(sum/81);
}
Should work, however, I have included a compilable example that I validated on a small sample, that should be easy to expand.
It is not optimized, but that wasn't part of your question. Optimization using shared memory would give a large performance boost.
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <cuda.h>
using namespace std;
__global__ void phi(double *img, int row, int col, double *d_mean){
int X=blockDim.x*blockIdx.x+threadIdx.x+4;
int Y=blockDim.y*blockIdx.y+threadIdx.y+4;
double sum = 0;
if(Y<row+4 && X<col+4){
for(int i=-4; i<=4; ++i){
for(int j=-4; j<=4; ++j){
sum+=img[ (Y+j)*(col+8)+X+i];
}
}
sum/=81;
d_mean[(Y-4)*col+X-4]=sum;
}
}
int main(int argc, char * argv[]) {
int width=10, height=10;
double *h_img=new double[(width+8)*(height+8)];
for(int i=0; i<height+8; i++){
for(int j=0; j<width+8; j++){
h_img[i*(width+8)+j]=0.0;
}
}
for(int i=0; i<height; i++){
for(int j=0; j<width; j++){
int index = (i+4)*(width+8)+j+4;
h_img[index]=i*width+j;
}
}
for(int i=0; i<height+8; i++){
for(int j=0; j<width+8; j++){
cout<<h_img[i*(width+8)+j]<<" ";
}cout<<endl;
}
double *d_img;
size_t size=sizeof(double)*(height+8)*(width*8);
cudaMalloc(&d_img, size);
cudaMemcpy(d_img, h_img, size, cudaMemcpyHostToDevice);
size = sizeof(double)*height*width;
double *d_avg;
cudaMalloc(&d_avg, size);
dim3 block(32, 32, 1);
dim3 grid(width/32+1, height/32+1, 1);
phi<<<grid, block>>>(d_img, height, width, d_avg);
cudaDeviceSynchronize();
double *h_avg=new double[width*height];
cudaMemcpy(h_avg, d_avg, size, cudaMemcpyDeviceToHost);
for(int i=0; i<height; i++){
for(int j=0; j<width; j++){
cout<<h_avg[i*width+j]<<" ";
}cout<<endl;
}
return 0;
}
Here's my 2 cents regarding local mean and local std.
You should check whether using matlab's optimized built-in functions (conv2 and stdfilt , with their gpu support) gives you better performance than a "simple" mex version. For example, to take the local mean, the fastest will be to use conv2 as follows:
local_mean_image=conv2(image,normalized_window,'same');
where in your case normalized_window=ones(9)./9^2;
For local std use stdfilt :
local_std_image = stdfilt(image, ones(9));
Both options are available for faster GPU performance, I use conv2 with Jacket routinely, and I saw the stdfilt supports gpuarray variables.
By observing the answers of #Christian Sarofeen and of #bla, I made some changes to my code and now I am able to find the mean exactly same as MATLAB. I posting this thinking that some one may use it in future(I am sending the image as is from MATLAB). Still finding standard deviation is little problem.
__global__ void phi(double *d_HSIImage,double *d_HSIImage2, int row, int col, double *d_phi_x, double *d_mean, double *d_std)
{
int X = blockDim.x * blockIdx.x + threadIdx.x;
int Y = blockDim.y * blockIdx.y + threadIdx.y;
int i,j;
double sum = 0;
if(Y>3 && X>3 && Y<row+4 && X<col+4)
{
int index = (X-4)*row+Y-4;
for(i=-4;i<=4;i++){
for(j=-4;j<=4;j++){
sum= sum + d_HSIImage2[(X+j)*(row+8)+(Y+i)];
}
}
d_mean[index] = sum/81;
double mean = 0;
double temp_std[9] = {0} ;
for(j=-4;j<=4;j++){
sum = 0;
for(i=-4;i<=4;i++){
sum = sum + d_HSIImage2[(X+j)*(row+8)+(Y+i)];//vector mean
}
mean = sum/9;
sum =0 ;
for(i=-4;i<=4;i++){
int index = (X+j)*(row+8)+(Y+i);
sum= sum + (d_HSIImage2[index]-mean) * (d_HSIImage2[index]-mean);
}
temp_std[j+4] = (sqrt(sum/9));//vector std
}
sum =0 ;
for(j=-4;j<=4;j++){
sum = sum + temp_std[j+4];//mean of vectors
}
mean = sum/9;
sum = 0 ;
for(j=-4;j<=4;j++){
sum = sum + (temp_std[j+4]-mean) * (temp_std[j+4]-mean);
}
d_std[index] = sqrt(sum);//std of vectors
d_phi_x[index] = 1.0/(1.0+exp((d_mean[index]-d_HSIImage[index])/d_std[index]));
}
}
I have an image of connected components(circles filled).If i want to segment them i can use watershed algorithm.I prefer writing my own function for watershed instead of using the inbuilt function in OPENCV.I have successfu How do i find the regionalmax of objects using opencv?
I wrote a function myself. My results were quite similar to MATLAB, although not exact. This function is implemented for CV_32F but it can easily be modified for other types.
I mark all the points that are not part of a minimum region by checking all the neighbors. The remaining regions are either minima, maxima or areas of inflection.
I use connected components to label each region.
I check each region for any point belonging to a maxima, if yes then I push that label into a vector.
Finally I sort the bad labels, erase all duplicates and then mark all the points in the output as not minima.
All that remains are the regions of minima.
Here is the code:
// output is a binary image
// 1: not a min region
// 0: part of a min region
// 2: not sure if min or not
// 3: uninitialized
void imregionalmin(cv::Mat& img, cv::Mat& out_img)
{
// pad the border of img with 1 and copy to img_pad
cv::Mat img_pad;
cv::copyMakeBorder(img, img_pad, 1, 1, 1, 1, IPL_BORDER_CONSTANT, 1);
// initialize binary output to 2, unknown if min
out_img = cv::Mat::ones(img.rows, img.cols, CV_8U)+2;
// initialize pointers to matrices
float* in = (float *)(img_pad.data);
uchar* out = (uchar *)(out_img.data);
// size of matrix
int in_size = img_pad.cols*img_pad.rows;
int out_size = img.cols*img.rows;
int x, y;
for (int i = 0; i < out_size; i++) {
// find x, y indexes
y = i % img.cols;
x = i / img.cols;
neighborCheck(in, out, i, x, y, img_pad.cols); // all regions are either min or max
}
cv::Mat label;
cv::connectedComponents(out_img, label);
int* lab = (int *)(label.data);
in = (float *)(img.data);
in_size = img.cols*img.rows;
std::vector<int> bad_labels;
for (int i = 0; i < out_size; i++) {
// find x, y indexes
y = i % img.cols;
x = i / img.cols;
if (lab[i] != 0) {
if (neighborCleanup(in, out, i, x, y, img.rows, img.cols) == 1) {
bad_labels.push_back(lab[i]);
}
}
}
std::sort(bad_labels.begin(), bad_labels.end());
bad_labels.erase(std::unique(bad_labels.begin(), bad_labels.end()), bad_labels.end());
for (int i = 0; i < out_size; ++i) {
if (lab[i] != 0) {
if (std::find(bad_labels.begin(), bad_labels.end(), lab[i]) != bad_labels.end()) {
out[i] = 0;
}
}
}
}
int inline neighborCleanup(float* in, uchar* out, int i, int x, int y, int x_lim, int y_lim)
{
int index;
for (int xx = x - 1; xx < x + 2; ++xx) {
for (int yy = y - 1; yy < y + 2; ++yy) {
if (((xx == x) && (yy==y)) || xx < 0 || yy < 0 || xx >= x_lim || yy >= y_lim)
continue;
index = xx*y_lim + yy;
if ((in[i] == in[index]) && (out[index] == 0))
return 1;
}
}
return 0;
}
void inline neighborCheck(float* in, uchar* out, int i, int x, int y, int x_lim)
{
int indexes[8], cur_index;
indexes[0] = x*x_lim + y;
indexes[1] = x*x_lim + y+1;
indexes[2] = x*x_lim + y+2;
indexes[3] = (x+1)*x_lim + y+2;
indexes[4] = (x + 2)*x_lim + y+2;
indexes[5] = (x + 2)*x_lim + y + 1;
indexes[6] = (x + 2)*x_lim + y;
indexes[7] = (x + 1)*x_lim + y;
cur_index = (x + 1)*x_lim + y+1;
for (int t = 0; t < 8; t++) {
if (in[indexes[t]] < in[cur_index]) {
out[i] = 0;
break;
}
}
if (out[i] == 3)
out[i] = 1;
}
The following listing is a function similar to Matlab's "imregionalmax". It looks for at most nLocMax local maxima above threshold, where the found local maxima are at least minDistBtwLocMax pixels apart. It returns the actual number of local maxima found. Notice that it uses OpenCV's minMaxLoc to find global maxima. It is "opencv-self-contained" except for the (easy to implement) function vdist, which computes the (euclidian) distance between points (r,c) and (row,col).
input is one-channel CV_32F matrix, and locations is nLocMax (rows) by 2 (columns) CV_32S matrix.
int imregionalmax(Mat input, int nLocMax, float threshold, float minDistBtwLocMax, Mat locations)
{
Mat scratch = input.clone();
int nFoundLocMax = 0;
for (int i = 0; i < nLocMax; i++) {
Point location;
double maxVal;
minMaxLoc(scratch, NULL, &maxVal, NULL, &location);
if (maxVal > threshold) {
nFoundLocMax += 1;
int row = location.y;
int col = location.x;
locations.at<int>(i,0) = row;
locations.at<int>(i,1) = col;
int r0 = (row-minDistBtwLocMax > -1 ? row-minDistBtwLocMax : 0);
int r1 = (row+minDistBtwLocMax < scratch.rows ? row+minDistBtwLocMax : scratch.rows-1);
int c0 = (col-minDistBtwLocMax > -1 ? col-minDistBtwLocMax : 0);
int c1 = (col+minDistBtwLocMax < scratch.cols ? col+minDistBtwLocMax : scratch.cols-1);
for (int r = r0; r <= r1; r++) {
for (int c = c0; c <= c1; c++) {
if (vdist(Point2DMake(r, c),Point2DMake(row, col)) <= minDistBtwLocMax) {
scratch.at<float>(r,c) = 0.0;
}
}
}
} else {
break;
}
}
return nFoundLocMax;
}
I do not know if it is what you want, but in my answer to this post, I gave some code to find local maxima (peaks) in a grayscale image (resulting from distance transform).
The approach relies on subtracting the original image from the dilated image and finding the zero pixels).
I hope it helps,
Good luck
I had the same problem some time ago, and the solution was to reimplement the imregionalmax algorithm in OpenCV/Cpp. It is not that complicated, because you can find the C++ source code of the function in the Matlab distribution. (somewhere in toolbox). All you have to do is to read carefully and understand the algorithm described there. Then rewrite it or remove the matlab-specific checks and you'll have it.
I'm trying to to teach a neural net of 2 inputs, 4 hidden nodes (all in same layer) and 1 output node. The binary representation works fine, but I have problems with the Bipolar. I can't figure out why, but the total error will sometimes converge to the same number around 2.xx. My sigmoid is 2/(1+ exp(-x)) - 1. Perhaps I'm sigmoiding in the wrong place. For example to calculate the output error should I be comparing the sigmoided output with the expected value or with the sigmoided expected value?
I was following this website here: http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html , but they use different functions then I was instructed to use. Even when I did try to implement their functions I still ran into the same problem. Either way I get stuck about half the time at the same number (a different number for different implementations). Please tell me if I have made a mistake in my code somewhere or if this is normal (I don't see how it could be). Momentum is set to 0. Is this a common 0 momentum problem? The error functions we are supposed to be using are:
if ui is an output unit
Error(i) = (Ci - ui ) * f'(Si )
if ui is a hidden unit
Error(i) = Error(Output) * weight(i to output) * f'(Si)
public double sigmoid( double x ) {
double fBipolar, fBinary, temp;
temp = (1 + Math.exp(-x));
fBipolar = (2 / temp) - 1;
fBinary = 1 / temp;
if(bipolar){
return fBipolar;
}else{
return fBinary;
}
}
// Initialize the weights to random values.
private void initializeWeights(double neg, double pos) {
for(int i = 0; i < numInputs + 1; i++){
for(int j = 0; j < numHiddenNeurons; j++){
inputWeights[i][j] = Math.random() - pos;
if(inputWeights[i][j] < neg || inputWeights[i][j] > pos){
print("ERROR ");
print(inputWeights[i][j]);
}
}
}
for(int i = 0; i < numHiddenNeurons + 1; i++){
hiddenWeights[i] = Math.random() - pos;
if(hiddenWeights[i] < neg || hiddenWeights[i] > pos){
print("ERROR ");
print(hiddenWeights[i]);
}
}
}
// Computes output of the NN without training. I.e. a forward pass
public double outputFor ( double[] argInputVector ) {
for(int i = 0; i < numInputs; i++){
inputs[i] = argInputVector[i];
}
double weightedSum = 0;
for(int i = 0; i < numHiddenNeurons; i++){
weightedSum = 0;
for(int j = 0; j < numInputs + 1; j++){
weightedSum += inputWeights[j][i] * inputs[j];
}
hiddenActivation[i] = sigmoid(weightedSum);
}
weightedSum = 0;
for(int j = 0; j < numHiddenNeurons + 1; j++){
weightedSum += (hiddenActivation[j] * hiddenWeights[j]);
}
return sigmoid(weightedSum);
}
//Computes the derivative of f
public static double fPrime(double u){
double fBipolar, fBinary;
fBipolar = 0.5 * (1 - Math.pow(u,2));
fBinary = u * (1 - u);
if(bipolar){
return fBipolar;
}else{
return fBinary;
}
}
// This method is used to update the weights of the neural net.
public double train ( double [] argInputVector, double argTargetOutput ){
double output = outputFor(argInputVector);
double lastDelta;
double outputError = (argTargetOutput - output) * fPrime(output);
if(outputError != 0){
for(int i = 0; i < numHiddenNeurons + 1; i++){
hiddenError[i] = hiddenWeights[i] * outputError * fPrime(hiddenActivation[i]);
deltaHiddenWeights[i] = learningRate * outputError * hiddenActivation[i] + (momentum * lastDelta);
hiddenWeights[i] += deltaHiddenWeights[i];
}
for(int in = 0; in < numInputs + 1; in++){
for(int hid = 0; hid < numHiddenNeurons; hid++){
lastDelta = deltaInputWeights[in][hid];
deltaInputWeights[in][hid] = learningRate * hiddenError[hid] * inputs[in] + (momentum * lastDelta);
inputWeights[in][hid] += deltaInputWeights[in][hid];
}
}
}
return 0.5 * (argTargetOutput - output) * (argTargetOutput - output);
}
General coding comments:
initializeWeights(-1.0, 1.0);
may not actually get the initial values you were expecting.
initializeWeights should probably have:
inputWeights[i][j] = Math.random() * (pos - neg) + neg;
// ...
hiddenWeights[i] = (Math.random() * (pos - neg)) + neg;
instead of:
Math.random() - pos;
so that this works:
initializeWeights(0.0, 1.0);
and gives you initial values between 0.0 and 1.0 rather than between -1.0 and 0.0.
lastDelta is used before it is declared:
deltaHiddenWeights[i] = learningRate * outputError * hiddenActivation[i] + (momentum * lastDelta);
I'm not sure if the + 1 on numInputs + 1 and numHiddenNeurons + 1 are necessary.
Remember to watch out for rounding of ints: 5/2 = 2, not 2.5!
Use 5.0/2.0 instead. In general, add the .0 in your code when the output should be a double.
Most importantly, have you trained the NeuralNet long enough?
Try running it with numInputs = 2, numHiddenNeurons = 4, learningRate = 0.9, and train for 1,000 or 10,000 times.
Using numHiddenNeurons = 2 it sometimes get "stuck" when trying to solve the XOR problem.
See also XOR problem - simulation