I wonder if there is an overview somewhere, listing all the things scheduled for removal - not only the obvious things like case class inheritance - but also all the smaller places, were code/functionality will be removed.
OK, no other answers yet, so I'll give it a try:
Language features:
Case-to-case-class inheritance
Case classes without parameter lists
val in for loops
Standard library items:
Package scala.dbc
Many things in scala.swing
A few method like sort, projection, first, elements, ... in the collection library
Methods like append, counted, findIndexOf, readInto in Iterator
Methods Array.fromFunction and new Array[Array[....]].
Class scala.CountedIterator
Class scala.Cell
Package scala.Math
The Tuple methods, Integer, Character, Sequence, RandomAccessSequence and a few annotation types in package object scala
#serializable
Quite a few methods in JavaConversions/JavaConverters
Quite a few helper methods in object List
case object scala.concurrent.TIMEOUT, class scala.concurrent.MailBox, object scala.concurrent.pilib
package object scala.runtime
A few other minor things
Related
I have been using sealed traits and case objects to define enumerated types in Scala and I recently came across another approach to extend the Enumeration class in Scala like this below:
object CertificateStatusEnum extends Enumeration {
val Accepted, SignatureError, CertificateExpired, CertificateRevoked, NoCertificateAvailable, CertChainError, ContractCancelled = Value
}
against doing something like this:
sealed trait CertificateStatus
object CertificateStatus extends {
case object Accepted extends CertificateStatus
case object SignatureError extends CertificateStatus
case object CertificateExpired extends CertificateStatus
case object CertificateRevoked extends CertificateStatus
case object NoCertificateAvailable extends CertificateStatus
case object CertChainError extends CertificateStatus
case object ContractCancelled extends CertificateStatus
}
What is considered a good approach?
They both get the job done for simple purposes, but in terms of best practice, the use of sealed traits + case objects is more flexible.
The story behind is that since Scala came with everything Java had, so Java had enumerations and Scala had to put them there for interoperability reasons. But Scala does not need them, because it supports ADTs (algebraic data types) so it can generate enumeration in a functional way like the one you just saw.
You'll encounter certain limitations with the normal Enumeration class:
the inability of the compiler to detect pattern matches exhaustively
it's actually harder to extend the elements to hold more data besides the String name and the Int id, because Value is final.
at runtime, all enums have the same type because of type erasure, so limited type level programming - for example, you can't have overloaded methods.
when you did object CertificateStatusEnum extends Enumeration your enumerations will not be defined as CertificateStatusEnum type, but as CertificateStatusEnum.Value - so you have to use some type aliases to fix that. The problem with this is the type of your companion will still be CertificateStatusEnum.Value.type so you'll end up doing multiple aliases to fix that, and have a rather confusing enumeration.
On the other hand, the algebraic data type comes as a type-safe alternative where you specify the shape of each element and to encode the enumeration you just need sum types which are expressed exactly using sealed traits (or abstract classes) and case objects.
These solve the limitations of the Enumeration class, but you'll encounter some other (minor) drawbacks, though these are not that limiting:
case objects won't have a default order - so if you need one, you'll have to add your id as an attribute in the sealed trait and provide an ordering method.
a somewhat problematic issue is that even though case objects are serializable, if you need to deserialize your enumeration, there is no easy way to deserialize a case object from its enumeration name. You will most probably need to write a custom deserializer.
you can't iterate over them by default as you could using Enumeration. But it's not a very common use case. Nevertheless, it can be easily achieved, e.g. :
object CertificateStatus extends {
val values: Seq[CertificateStatus] = Seq(
Accepted,
SignatureError,
CertificateExpired,
CertificateRevoked,
NoCertificateAvailable,
CertChainError,
ContractCancelled
)
// rest of the code
}
In practice, there's nothing that you can do with Enumeration that you can't do with sealed trait + case objects. So the former went out of people's preferences, in favor of the latter.
This comparison only concerns Scala 2.
In Scala 3, they unified ADTs and their generalized versions (GADTs) with enums under a new powerful syntax, effectively giving you everything you need. So you'll have every reason to use them. As Gael mentioned, they became first-class entities.
It depends on what you want from enum.
In the first case, you implicitly have an order on items (accessed by id property). Reordering has consequences.
I'd prefer 'case object', in some cases enum item could have extra info in the constructor (like, Color with RGB, not just name).
Also, I'd recommend https://index.scala-lang.org/mrvisser/sealerate or similar libraries. That allows iterating over all elements.
case classes have some nice percs, like copy, hashCode, toString, Pattern Matching. Why not make every Scala class a case class?
A case class is extremely good to hold complex values, like entity objects. They are thought precisely for that case, so they provide you methods that make sense precisely for this use case by synthesizing the methods you mentioned and furthermore making your class Serializable and creating a companion object with a "factory" method (other than the extractor for pattern matching).
The drawbacks are the following:
some of the properties that a case class has may not be interesting for the class you're creating: would you want an equals method on an object holding a database connection? Would it make sense for it to be Serializable? And if it did, would it be secure?
all these features are not free: they require the compiler to do some extra work and add to your final artifact size; why having these if you don't need the extra features a case class provides?
you cannot inherit from case class to another case class, which may go against how you are modeling your domain. Why? Short answer: equality. You can find a longer answer here.
Case classes have clear semantics -- data container (much better POJOs or ADT blocks, depends on your background).
Sometimes methods like copy or unapply can have confusing meaning -- e.g. if fields are mutable. Case classes are designed to be used in "idiomatic scala style", that might not be applicable everywhere.
Last but not the least -- technical disadvantages (more code in .class, more code to serialize, issues with inheritance).
Starting with 2.10, -Xlint complains about classes defined inside of package objects. But why? Defining a class inside a package object should be exactly equivalent to defining the classes inside of a separate package with the same name, except a lot more convenient.
In my opinion, one of the serious design flaws in Scala is the inability to put anything other than a class-like entity (e.g. variable declarations, function definitions) at top level of a file. Instead, you're forced to put them into a separate ''package object'' (often in package.scala), separate from the rest of the code that they belong with and violating a basic programming rule which is that conceptually related code should be physically related as well. I don't see any reason why Scala can't conceptually allow anything at top level that it allows at lower levels, and anything non-class-like automatically gets placed into the package object, so that users never have to worry about it.
For example, in my case I have a util package, and under it I have a number of subpackages (util.io, util.text, util.time, util.os, util.math, util.distances, etc.) that group heterogeneous collections of functions, classes and sometimes variables that are semantically related. I currently store all the various functions, classes, etc. in a package object sitting in a file called io.scala or text.scala or whatever, in the util directory. This works great and it's very convenient because of the way functions and classes can be mixed, e.g. I can do something like:
package object math {
// Coordinates on a sphere
case class SphereCoord(lat: Double, long: Double) { ... }
// great-circle distance between two points
def spheredist(a: SphereCoord, b: SphereCoord) = ...
// Area of rectangle running along latitude/longitude lines
def rectArea(topleft: SphereCoord, botright: SphereCoord) = ...
// ...
// ...
// Exact-decimal functions
class DecimalInexactError extends Exception
// Format floating point value in decimal, error if can't do exactly
formatDecimalExactly(val num: Double) = ...
// ...
// ...
}
Without this, I would have to split the code up inconveniently according to fun vs. class rather than by semantics. The alternative, I suppose, is to put them in a normal object -- kind of defeating the purpose of having package objects in the first place.
But why? Defining a class inside a package object should be exactly equivalent to defining the classes inside of a separate package with the same name,
Precisely. The semantics are (currently) the same, so if you favor defining a class inside a package object, there should be a good reason. But the reality is that there is at least one good reason no to (keep reading).
except a lot more convenient
How is that more convenient?
If you are doing this:
package object mypkg {
class MyClass
}
You can just as well do the following:
package mypkg {
class MyClass
}
You'll even save a few characters in the process :)
Now, a good and concrete reason not to go overboard with package objects is that while packages are open, package objects are not.
A common scenario would be to have your code dispatched among several projects, with each project defining classes in the same package. No problem here.
On the other hand, a package object is (like any object) closed (as the spec puts it "There can be only one package object per package"). In other words,
you will only be able to define a package object in one of your projects.
If you attempt to define a package object for the same package in two distinct projects, bad things will happen, as you will effectively end up with two
distinct versions of the same JVM class (n our case you would end up with two "mypkg.class" files).
Depending on the cases you might end up with the compiler complaining that it cannot find something that you defined in the first version of your package object,
or get a "bad symbolic reference" error, or potentially even a runtime error. This is a general limitation of package objects, so you have to be aware of it.
In the case of defining classes inside a package object, the solution is simple: don't do it (given that you won't gain anything substantial compared to just defining the class as a top level).
For type aliase, vals and vars, we don't have such a luxuary, so in this case it is a matter of weighing whether the syntactic convenience (compared to defining them in an object) is worth it, and then take care not to define duplicate package objects.
I have not found a good answer to why this semantically equivalent operation would generate a lint warning. Methinks this is a lint bug. The only thing that I have found that must not be placed inside a package object (vs inside a plain package) is an object that implements main (or extends App).
Note that -Xlint also complains about implicit classes declared inside package objects, even though they cannot be declared at package scope. (See http://docs.scala-lang.org/overviews/core/implicit-classes.html for the rules on implicit classes.)
I figured out a trick that allows for all the benefits of package objects without the complaints about deprecation. In place of
package object foo {
...
}
you can do
protected class FooPackage {
...
}
package object foo extends FooPackage { }
Works the same but no complaint. Clear sign that the complaint itself is bogus.
I am a teachers assistant for a class that teaches Scala. As an assignment, I want the students to implement an arraylist class.
In java I wrote it like:
public class ArrayList<T> implements List<T>{....}
Is there any equivalent List trait that I should use to implement the arraylist?
The name ArrayList suggests that you should mix-in IndexedSeq. Actually you probably want to get all the goodies that are provided by IndexedSeqLike, i.e.
class ArrayList[A] extends IndexedSeq[A] with IndexedSeqLike[A, ArrayList[A]]
This gets you concrete implementations of head, tail, take, drop, filter, etc. If you also want map, flatMap, etc. (all the methods that take a type parameter) to work properly (return an ArrayList[A]), you also have to provide a type class instance for CanBuildFrom in your companion object, e.g.
def cbf[A, B] = new CanBuildFrom[ArrayList[A], B, ArrayList[B]] {
// TODO Implementation!
}
The scala collection library is very complex. For an overview on the inheritance take a look at these pictures:
scala.collection.immutable: http://www.scala-lang.org/docu/files/collections-api/collections.immutable.png
scala.collection.mutable: http://www.scala-lang.org/docu/files/collections-api/collections.mutable.png
Also the scaladoc gives a good overview about all the classes and traits of the collection library.
Be aware, that in Scala a List is a real list, meaning it is a LinearSeq, in Java a List is more like an IndexedSeq in Scala.
In Scala there are many Interfaces. First, they are separated in mutable and immutable ones. In Java ArrayList is based on an array - thus it is an indexed sequence. In Scala the interface for this is IndexedSeq[A]. Because ArrayList is also mutable, you can choose scala.collection.mutable.IndexedSeq otherwise scala.collection.immutable.IndexedSeq. Instead of mutable.IndexedSeq you can also choose scala.collection.mutable.Buffer, which does not guarantee an access time of O(1).
If you wanna have a more functional approach you can prefer Seq[A] as interface or Iterable[A] if you want to be able to implement more than Sequences.
That would be Seq[T], or maybe IndexedSeq[T] - or even List[T].
Ok, I'll explain why I ask this question. I begin to read Lift 2.2 source code these days.
It's good if you happened to read lift source code before.
In Lift, I found that, define inner class and inner trait are very heavily used.
object Menu has 2 inner traits and 4 inner classes. object Loc has 18 inner classes, 5 inner traits, 7 inner objects.
There're tons of codes write like this. I wanna to know why the author write like this.
Is it because it's the author's
personal taste or a powerful use of
language feature?
Is there any trade-off for this kind
of usage?
Before 2.8, you had to choose between packages and objects. The problem with packages is that they cannot contain methods or vals on their own. So you have to put all those inside another object, which can get awkward. Observe:
object Encrypt {
private val magicConstant = 0x12345678
def encryptInt(i: Int) = i ^ magicConstant
class EncryptIterator(ii: Iterator[Int]) extends Iterator[Int] {
def hasNext = ii.hasNext
def next = encryptInt(ii.next)
}
}
Now you can import Encrypt._ and gain access to the method encryptInt as well as the class EncryptIterator. Handy!
In contrast,
package encrypt {
object Encrypt {
private[encrypt] val magicConstant = 0x12345678
def encryptInt(i: Int) = i ^ magicConstant
}
class EncryptIterator(ii: Iterator[Int]) extends Iterator[Int] {
def hasNext = ii.hasNext
def next = Encrypt.encryptInt(ii.next)
}
}
It's not a huge difference, but it makes the user import both encrypt._ and encrypt.Encrypt._ or have to keep writing Encrypt.encryptInt over and over. Why not just use an object instead, as in the first pattern? (There's really no performance penalty, since nested classes aren't actually Java inner classes under the hood; they're just regular classes as far as the JVM knows, but with fancy names that tell you that they're nested.)
In 2.8, you can have your cake and eat it too: call the thing a package object, and the compiler will rewrite the code for you so it actually looks like the second example under the hood (except the object Encrypt is actually called package internally), but behaves like the first example in terms of namespace--the vals and defs are right there without needing an extra import.
Thus, projects that were started pre-2.8 often use objects to enclose lots of stuff as if they were a package. Post-2.8, one of the main motivations has been removed. (But just to be clear, using an object still doesn't hurt; it's more that it's conceptually misleading than that it has a negative impact on performance or whatnot.)
(P.S. Please, please don't try to actually encrypt anything that way except as an example or a joke!)
Putting classes, traits and objects in an object is sometimes required when you want to use abstract type variables, see e.g. http://programming-scala.labs.oreilly.com/ch12.html#_parameterized_types_vs_abstract_types
It can be both. Among other things, an instance of an inner class/trait has access to the variables of its parent. Inner classes have to be created with a parent instance, which is an instance of the outer type.
In other cases, it's probably just a way of grouping closely related things, as in your object example. Note that the trait LocParam is sealed, which means that all subclasses have to be in the same compile unit/file.
sblundy has a decent answer. One thing to add is that only with Scala 2.8 do you have package objects which let you group similar things in a package namespace without making a completely separate object. For that reason I will be updating my Lift Modules proposal to use a package object instead of a simple object.