How can I rearrange the columns of this matrix? - matlab

Given a binary matrix in which every row and column contains exactly only one 1, I need to rearrange the matrix columnwise so that it will become an identity matrix. For example, given a binary matrix:
Binary = [ 0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0 ]
To get the identity matrix we rearrange the column as 2 3 1 5 4.
How can we optimally rearrange the columns for any given arbitrary square binary matrix?

A very simple way to do this is to use the function FIND like so:
[index,~] = find(Binary.'); %'# Transpose the matrix and find the row indices
%# of the non-zero entries
And you can test that it work as follows:
>> Binary(:,index)
ans =
1 0 0 0 0 %# Yup, that's an identity matrix alright!
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
OLD APPROACH:
This isn't as compact or efficient as the above solution, but you could also transpose the matrix and use SORTROWS to sort the columns (now transposed into the rows) and return the sort indices. This will actually sort values in ascending order, which will give you an anti-diagonal matrix, so you will want to flip the vector of indices using FLIPUD. Here's the code:
[~,index] = sortrows(Binary.'); %'# Transpose and sort the matrix
index = flipud(index); %# Flip the index vector

If you know the matrix can be manipulated into an identity matrix, why don't you just create an identity matrix with the same dimensions?
identity_matrix=eye(length(Binary))

Related

Vector to matrix with row sum 1

I have a logical 1-by-n vector with sum m. Now, I need to convert it into a matrix m-by-n in a way that the row sum is equal 1.
vector (1-by-8) with sum 4
[0 1 0 0 1 0 1 1]
matrix (4-by-8) with row sum 1
[0 1 0 0 0 0 0 0;
0 0 0 0 1 0 0 0;
0 0 0 0 0 0 1 0;
0 0 0 0 0 0 0 1]
Is there a mathematically efficient way without calculating the sum, creating a empty matrix, loop through the vector and adding the 1s row by row?
I think that in that case, given your input, you don't even need to calculate the sum.
You can define an identity matrix of size n, then use your input vector to sample the required rows out of it:
I = eye(n);
y = I(x, :) ; % Output Matrix. x is the input vector
Here's another method, using sparse:
matrix = full(sparse(1:m, find(vector), 1, m, n));

Matlab matrix save 1 positions for large matrices

I have a sparse matrix in Matlab. I would like to save the positions of 1's in the matrix row-wise and column-wise.
For example consider the below matrix:
0 1 0 1 0
0 0 0 1 0
0 0 0 0 0
0 0 1 0 0
1 0 0 0 0
I would like two files written as:
row-wise.csv:
1,2
1,4
2,4
4,3
5,1
column-wise.csv:
5,1
1,2
4,3
1,4
2,4
I know I can run a loop row-wise or column-wise and save element by element using fprintf, but is there a better way?
I'm dealing with very large matrices and I'm wondering what an efficient way is to do this?
You're going to want to use find to perform this task. Then to write them out to a csv file, you can simply use dlmwrite.
For the column-wise, you can use the two outputs of find which are the row index and column index of each 1 (in column-major order).
data = [0 1 0 1 0
0 0 0 1 0
0 0 0 0 0
0 0 1 0 0
1 0 0 0 0];
[row, col] = find(data);
M = [row, col];
dlmwrite('column-wise.csv', M);
Then to obtain the row-wise result, you can just sort your column-wise result by rows and then columns using sortrows.
dlmwrite('row-wise.csv', sortrows(M))
The alternative to this, is to perform find again on the transpose of your data (to force row-major ordering) but I would think that the sortrows approach is faster.
[col, row] = find(data.');
dlmwrite('row-wise.csv', [row, col])

gaussian elimination of permutation matrix

I have a binary sparse matrix H of size 600*1200 constructed by concatenating square permutation matrices of size 200, thus sparse matrix have 3 ones in each column and 6 ones in each row. Now am trying to transform the matrix into reduced echelon form.
This is my code:
[m,n]=size(H);
for i=1:m
ind=find(H(:,i),1,'last');
if ind<=i
continue;
end
if ind~=i
temp=H(ind,:);
H(ind,:)=H(i,:);
H(i,:)=temp;
end
I=find(H(:,i));
% Guassian elimination
for j=1:length(I)
if I(j)~=i
H(I(j),:)=mod(H(I(j),:)+H(i,:),2);
end
end
end
But whichever H matrix generated, I can't get rid of other entries at 400th column,
how can I fix this, help
Since Gaussian elimination does not involve rearrangement of columns, the first 600 columns of the resulting matrix will only form the identity matrix if the first 600 columns of the original matrix were linearly independent. Otherwise, you are going to have "short" columns with other entries in them, as the Wikipedia article shows.
The way your matrix is structured, the first 400 columns are guaranteed to be linearly dependent. Indeed, the sum of the first 200 columns is the all-1 vector, and so is the sum of the columns 201-400. This is why you are seeing these entries in the 400th column.
To create identity matrix on the left you need to rearrange columns. One way, which looks a bit redundant but is very easy to code, is to
run your algorithm
rearrange columns (it's easy to identify the desired columns after rref)
do rref again.
Here is the code that does steps 2-3.
for i = 1:m
j = find(H(i,:),1,'first');
[H(:,i), H(:,j)] = deal(H(:,j), H(:,i));
end
H = rref(H)
Sample input into rref:
1 0 1 0 1
0 1 0 0 1
1 0 1 1 0
0 0 0 0 1
Output of your code:
1 0 1 1 0
0 1 0 0 1
0 0 0 1 1
0 0 0 0 1
After the column swap and second rref:
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

Convert digit to vector octave/matlab [duplicate]

This question already has answers here:
Construct this matrix based on two vectors MATLAB
(3 answers)
Closed 8 years ago.
I have a vector y = [0; 2; 4]
I want to convert each element of it into vector, where all elements are zero but element with index equal to digit is 1.
I'd like to do it without loops.
For example [0; 2; 4] should be converted to
[1 0 0 0 0 0 0 0 0 0;
0 0 1 0 0 0 0 0 0 0;
0 0 0 0 1 0 0 0 0 0]
(in this example vector first index is 0)
The usual trick with sparse can be used to simplify the process. Let n denote the desired number of columns. Then
result = full(sparse(1:numel(y), y+1, 1, numel(y), n));
For example, y = [0;2;4] and 10 produce
result =
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
First you need to decide how many digits you want to represent each number. In your case, you have 10 digits per number, so let's keep that in mind.
Once you do this, it's just a matter of indexing each element in your matrix. In your case, you have 10 digits per number. As such, do something like this:
y = [0; 2; 4]; %// Your digits array
out = zeros(numel(y), 10); %// 10 digits per number
ind = sub2ind(size(out), [1:numel(y)].', y+1);
out(ind) = 1;
The output should look like this:
out =
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
Let's go through this code slowly. y defines the digits you want per row of the output matrix. out allocates a matrix of zeroes where the number of rows is defined by how many digits you want in y. out will thus store your resulting matrix that you have shown us in your post.
The number of columns is 10, but you change this to be whatever you want. ind uses a command called sub2ind. This allows to completely vectorize the assignment of values in your out matrix and avoids a for loop. The first parameter is an array of values that defines how many rows and columns are in your matrix that you are trying to assign things to. In this case, it's just the size of out. The second and third parameters are the rows and columns you want to access in your matrix. In this case, the rows vary from 1 to as many elements as there are in y. In our case, this is 3. We want to generate one number per row, which is why it goes from 1 to 3. The columns denote where we want to set the digit to one for each row. As MATLAB indexes starting at 1, we have to make sure that we take y and add by 1. ind thus creates the column-major indices in order to access our matrix. The last statement finally accesses these locations and assigns a 1 to each location, thus producing our matrix.
Hope this helps!

Trim Binary Matrix in MatLab

I have a binary matrix like this:
0 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
and I want to trim this matrix (in other words, remove zeroes at the boundaries) to be like:
0 0 1 0
1 0 0 0
0 1 0 1
0 0 1 0
How to do this the "Matlab" way? that's not to use conventional loops and conditions.
To be clearer, the matrix should be reduced to start from the first column which has at least one 1, and ends at the last column with the same condition, inclusive. Any column out of this range should be removed. Same rules apply for rows.
Thanks.
If you have the data in matrix M...
x = find(any(M,2),1,'first'):find(any(M,2),1,'last');
y = find(any(M),1,'first'):find(any(M),1,'last');
M(x, y)
Or, if you know that there will be a 1 in every row/col except the edges:
M(any(M,2), any(M))
Extension to higher dimensions:
Assuming a 3D matrix to be trimmed, this is more straightforward:
M=rand(3,3,3); % generating a random 3D matrix
M(2,:,:)=0; % just to make a check if it works in extreme case of having zeros in the middle
padded = padarray(M,[2 2 2]); % making some zero boundaries
[r,c,v]=ind2sub(size(padded),find(padded));
recoveredM=padded(min(r):max(r),min(c):max(c),min(v):max(v));
check=M==recoveredM % checking to see if M is successfully recovered
You could use the fact that find can return row and column indices:
[r1, c1] = find(x, 1, 'first')
[r2, c2] = find(x, 1, 'last')
x(r1:r2, c1:c2)