Trim Binary Matrix in MatLab - matlab

I have a binary matrix like this:
0 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
and I want to trim this matrix (in other words, remove zeroes at the boundaries) to be like:
0 0 1 0
1 0 0 0
0 1 0 1
0 0 1 0
How to do this the "Matlab" way? that's not to use conventional loops and conditions.
To be clearer, the matrix should be reduced to start from the first column which has at least one 1, and ends at the last column with the same condition, inclusive. Any column out of this range should be removed. Same rules apply for rows.
Thanks.

If you have the data in matrix M...
x = find(any(M,2),1,'first'):find(any(M,2),1,'last');
y = find(any(M),1,'first'):find(any(M),1,'last');
M(x, y)
Or, if you know that there will be a 1 in every row/col except the edges:
M(any(M,2), any(M))

Extension to higher dimensions:
Assuming a 3D matrix to be trimmed, this is more straightforward:
M=rand(3,3,3); % generating a random 3D matrix
M(2,:,:)=0; % just to make a check if it works in extreme case of having zeros in the middle
padded = padarray(M,[2 2 2]); % making some zero boundaries
[r,c,v]=ind2sub(size(padded),find(padded));
recoveredM=padded(min(r):max(r),min(c):max(c),min(v):max(v));
check=M==recoveredM % checking to see if M is successfully recovered

You could use the fact that find can return row and column indices:
[r1, c1] = find(x, 1, 'first')
[r2, c2] = find(x, 1, 'last')
x(r1:r2, c1:c2)

Related

How do I populate matrix with a vector, considering Matrix as chart and vector as line

Consider following values
result=zeros(11,11);
line=(4:0.4:8);
Imagine result as a 11x11 X-Y chart paper. So initially we have a blank chart paper. As in a chart plot, I want to populate values of line in result matrix so that we get an upward sloping line when we display matrix.
Consider following figure which I want as result.
Here, result matrix can be visualized as chart paper with origin at bottom left corner. Now, for X=1, line(1)=4; for X=2, line(2)=4.4,.. and so on.
I have written following code which serves the purpose.
result=zeros(11,11);
line=(4:0.4:8);
for i=1:length(line)
temp=floor(line(i));
result(length(line)-temp+1,i)=line(i);
end
Is there a more efficient way to implement this solution? (I shall be working with 20000x20000 matrix, so method needs to be fast)
As suggested in comments, Problem Description is as follows:
I have lets say 1000 lines. All of these lines have different slopes and intercept. I know the x range of the lines and y range of the lines. There is not much I can infer from data if I plot these lines simultaneously on a single plot. The resulting image will be something like this:
Not much can be inferred about this plot. However, if I can get this information saved in a big matrix, then I can analyse where maximum lines are passing through at a particular X index and make further analysis accordingly.
Further Details
I am discretinizing Y axis into 1000 equally spaced interval:
sample code as follows:
range=max(data)-min(data);
percent=0.20;
outerRange= max(data)+range*percent - (min(data)-range*percent);
outerRangeValues=min(data)-range*percent:outerRange/1000:max(data)+range*percent;
Even though it is entirely possible that a particularly steep line will pass through 2 or more rows in a single column, I'll only select only one of the rows to be filled by line in a single column. This can be done by taking average of rows values for a particular column and assigning single row to be its value for that column
You can use sub2ind to keep things vectorized and avoid loops.
The idea is to find all the row and column indices which will have to be modified.
For X axis it is easy, it is simply one per column so the X indices will be 1,2,3,...,np.
For the Y axis, you have to bin the line values into the Y grid. Since indices have to be integers, you have to convert your floating point values into integers. For that you can choose between round, floor and ceil. Each will place some values slightly differently, it is up to you to define which rounding method makes sense for your problem.
Once you have your indices [row_indices,column_indices], you convert them to linear indices into the matrix by using sub2ind, then you assign the values of line into these linear indices.
In code:
line=(4:0.4:8); % your input (line vector)
np = numel(line) ; % determine size of matrix/chart
% identify column and row indices to modify
idCol = 1:np ;
idRow = fliplr( round( line ) ) ; % choose "round", "floor" or "ceil"
% build the result
result = zeros(np);
linearInd = sub2ind( [np,np], idRow, idCol ) ;
result(linearInd) = line ;
Gives you:
>> result
result =
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 7.2 7.6 8
0 0 0 0 0 0 6.4 6.8 0 0 0
0 0 0 5.2 5.6 6 0 0 0 0 0
0 4.4 4.8 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Acces 3D Matrix with 2D index and 1D vector

I have a 3D matrix A (size m*n*k) where m=latitude, n*longitude and k=time.
I want only specific values from first and second dimension, specified by a logical matrix B (size m*n), and I want only the timesteps specified by vector C (size k).
In the end this should become a 2D matrix D, since the first two dimesions will colapse to one.
What is the most easy approach to do this?
And also is it possible to combine logical with linear indizes here? For example B is logical and C is linear?
Sample code with rand:
A=rand(10,10,10);
B=randi([0 1], 10,10);
C=randi([0 1], 10,1);
D=A(B,C) %This would be my approach which doesnt work. The size of D should be sum(B)*sum(c)
Another example without rand:
A=reshape([1:27],3,3,3);
B=logical([1,0,0;1,0,0;0,0,0]);
C=(1,3); %get data from timestep 1 and 5
D=A(B,C);%What I want to do, but doesnÄt work that way
D=[1,19;2,20];%Result should look like this! First dimension is now all data from dimesion 1 and 2. New dimesion 2 is now the time.
A = rand(4,4,4);
B = randi([0 1], 4,4)
B =
1 1 0 1
1 0 1 1
0 0 1 0
1 0 1 1
>> C = randi([0 1],1,1,4);
>> C(:)
ans =
0
1
1
0
Then use bsxfun or implicit expansion expansion whith .* if newer Matlab version to generate a matrix of logical for you given coordinates.
>> idx = logical(bsxfun(#times,B,C))
idx(:,:,1) =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
idx(:,:,2) =
1 1 0 1
1 0 1 1
0 0 1 0
1 0 1 1
idx(:,:,3) =
1 1 0 1
1 0 1 1
0 0 1 0
1 0 1 1
idx(:,:,4) =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Then your output is D = A(idx). However, note that this D is now an Nx1 array. Where N is number of true elements is B times number of true elements in C. 10x True in B and 2x True in C:
>> size(D)
ans =
20 1
An easy way to do it is to first reshape A into an m*n-by-k matrix, then do your indexing:
result = reshape(A, [], size(A, 3));
result = result(B, C);
In this case C can be either a logical vector or vector of indices.

Using a Matrix to Populate Every Other Value in a Column

Im learning matlab as I have free time.
Matrix B is half the length of Matrix C
I want Every Value in the first column of matrix B to populate every other Value in the first column of Matrix C
To do this Im using a for loop. Currently I get every other value populated with the last number in the column of matrix B. What do I need to change?
Z=length(A);
X = length(B);
C = zeros(size(A);
for n = 1:2:Z
for m = 1:1:X
C(n,1) = B(m,1);
end
end
You can use the kron function:
reps = 2;
delta = zeros(reps,1);
B = magic(5);
C = kron(B,delta);
Here rep indicates that every second value should be taken from B. But you can also duplicate the values by using delta = ones(reps,1);, or any mix that you are interested in, by modifying delta.
Additionally you can change the dimension of delta to a row vector and then can duplicate values along the rows. Or by allowing delta to be a matrix you can be get more fancy stuff.
You can simply write this:
B = magic(4); % The small matrix with the values
C = zeros(size(A)*2); % The matrix to fill the values in
C(1:2:end,1) = B(:,1) % populating the matrix
and you get:
C =
16 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

assigning coordinate to a matrix in MATLAB

I'm writing a MATLAB code, I encountered a problem: I have a (2N+1)*(2N+1) matrix for example 7*7. I want to assign coordinate system to it such that the matrix center is the origin of coordinate system. I mean I want to assign (0,0) to row 4 and column 4 of matrix, (1,0) to row 4 and column 5 of matrix and so on. please help me
Thank you in advance
I want to generate a line of ones in all possible directions in a square matrix like this:
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
center of matrix is the origin. this line has 30 degree from horizontal axis.
What you want is a simple mapping from the original matrix counting system to a customized one. Here I have built two cell matrices, representing the coordinates of the elements in the matrix.
Here I have done a simple mapping as follows:
for ii = 1:7
for jj=1:7
D{ii,jj} = C{ii,jj} - [4,4];
end
end
Generally, for matrix of size 2*N+1, you will do the following:
for ii = 1:2*N+1
for jj = 1:2*N+1
D{ii,jj} = C{ii,jj} - [N+1,N+1];
end
end
where C is the original matrix and D is the mapped matrix. After you well-understood what I have done here, you can then replace the for-loops with more efficient functions such as bsxfun.

Get the indexes of the boundary cells of a subset of a matrix. Matlab

Given a matrix where 1 is the current subset
test =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Is there a function, or quick method to get change the subset to the boundary of the current subset?
Eg. Get this subset from 'test' above
test =
0 0 0 0 0 0
0 1 1 1 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 1 1 1 0
0 0 0 0 0 0
In the end I just want to get the minimum of the cells surrounding a subset of a matrix. Sure I could loop through and get the minimum of the boundary (cell by cell), but there must be a way to do it with the method i've shown above.
Note the subset WILL be connected, but may not be rectangular. This may be the big catch.
This is a possible subset.... (Would pad this with a NaN border)
test =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 1 1
0 0 1 1 1 1
Ideas?
The basic steps I'd use are:
Perform a dilation on the shape to get a new area which is the shape plus its boundary
Subtract the original shape from the dilated shape to leave just the boundary
Use the boundary to index your data matrix, then take the minimum.
Dilation
What I want to do here is pass a 3x3 window over each cell and take the maximum value in that window:
[m, n] = size(A); % assuming A is your original shape matrix
APadded = zeros(m + 2, n + 2);
APadded(2:end-1, 2:end-1) = A; % pad A with zeroes on each side
ADilated = zeros(m + 2, n + 2); % this will hold the dilated shape.
for i = 1:m
for j = 1:n
mask = zeros(size(APadded));
mask(i:i+2, j:j+2) = 1; % this places a 3x3 square of 1's around (i, j)
ADilated(i + 1, j + 1) = max(APadded(mask));
end
end
Shape subtraction
This is basically a logical AND and a logical NOT to remove the intersection:
ABoundary = ADilated & (~APadded);
At this stage you may want to remove the border we added to do the dilation, since we don't need it any more.
ABoundary = ABoundary(2:end-1, 2:end-1);
Find the minimum data point along the boundary
We can use our logical boundary to index the original data into a vector, then just take the minimum of that vector.
dataMinimum = min(data(ABoundary));
You should look at this as morphology problem, not set theory. This can be solved pretty easily with imdilate() (requires the image package). You basically only need to subtract the image to its dilation with a 3x3 matrix of 1.
octave> test = logical ([0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 1 1
0 0 1 1 1 1]);
octave> imdilate (test, true (3)) - test
ans =
0 0 0 0 0 0
0 1 1 1 1 0
0 1 0 0 1 0
0 1 0 0 1 1
0 1 0 0 0 0
0 1 0 0 0 0
It does not, however, pads with NaN. If you really want that, you could pad your original matrix with false, do the operation, and then check if there's any true values in the border.
Note that you don't have to use logical() in which case you'll have to use ones() instead of true(). But that takes more memory and has worse performance.
EDIT: since you are trying to do it without using any matlab toolbox, take a look at the source of imdilate() in Octave. For the case of logical matrices (which is your case) it's a simple usage of filter2() which belongs to matlab core. That said, the following one line should work fine and be much faster
octave> (filter2 (true (3), test) > 0) - test
ans =
0 0 0 0 0 0
0 1 1 1 1 0
0 1 0 0 1 0
0 1 0 0 1 1
0 1 0 0 0 0
0 1 0 0 0 0
One possible solution is to take the subset and add it to the original matrix, but ensure that each time you add it, you offset its position by +1 row, -1 row and +1 column, -1 column. The result will then be expanded by one row and column all around the original subset. You then use the original matrix to mask the original subet to zero.
Like this:
test_new = test + ...
[[test(2:end,2:end);zeros(1,size(test,1)-1)],zeros(size(test,1),1)] + ... %move subset up-left
[[zeros(1,size(test,1)-1);test(1:end-1,2:end)],zeros(size(test,1),1)] + ... %move down-left
[zeros(size(test,1),1),[test(2:end,1:end-1);zeros(1,size(test,1)-1)]] + ... %move subset up-right
[zeros(size(test,1),1),[zeros(1,size(test,1)-1);test(1:end-1,1:end-1)]]; %move subset down-right
test_masked = test_new.*~test; %mask with original matrix
result = test_masked;
result(result>1)=1; % ensure that there is only 1's, not 2, 3, etc.
The result for this on your test matrix is:
result =
0 0 0 0 0 0
0 1 1 1 1 0
0 1 0 0 1 0
0 1 0 0 1 1
0 1 0 0 0 0
0 1 0 0 0 0
Edited - it now grabs the corners as well, by moving the subset up and to the left, up and to the right, down then left and down then right.
I expect this would be a very quick way to achieve this - it doesn't have any loops, nor functions - just matrix operations.