Difference between fold and foldLeft or foldRight? - scala

NOTE: I am on Scala 2.8—can that be a problem?
Why can't I use the fold function the same way as foldLeft or foldRight?
In the Set scaladoc it says that:
The result of folding may only be a supertype of this parallel collection's type parameter T.
But I see no type parameter T in the function signature:
def fold [A1 >: A] (z: A1)(op: (A1, A1) ⇒ A1): A1
What is the difference between the foldLeft-Right and fold, and how do I use the latter?
EDIT: For example how would I write a fold to add all elements in a list? With foldLeft it would be:
val foo = List(1, 2, 3)
foo.foldLeft(0)(_ + _)
// now try fold:
foo.fold(0)(_ + _)
>:7: error: value fold is not a member of List[Int]
foo.fold(0)(_ + _)
^

Short answer:
foldRight associates to the right. I.e. elements will be accumulated in right-to-left order:
List(a,b,c).foldRight(z)(f) = f(a, f(b, f(c, z)))
foldLeft associates to the left. I.e. an accumulator will be initialized and elements will be added to the accumulator in left-to-right order:
List(a,b,c).foldLeft(z)(f) = f(f(f(z, a), b), c)
fold is associative in that the order in which the elements are added together is not defined. I.e. the arguments to fold form a monoid.

fold, contrary to foldRight and foldLeft, does not offer any guarantee about the order in which the elements of the collection will be processed. You'll probably want to use fold, with its more constrained signature, with parallel collections, where the lack of guaranteed processing order helps the parallel collection implements folding in a parallel way. The reason for changing the signature is similar: with the additional constraints, it's easier to make a parallel fold.

You're right about the old version of Scala being a problem. If you look at the scaladoc page for Scala 2.8.1, you'll see no fold defined there (which is consistent with your error message). Apparently, fold was introduced in Scala 2.9.

For your particular example you would code it the same way you would with foldLeft.
val ns = List(1, 2, 3, 4)
val s0 = ns.foldLeft (0) (_+_) //10
val s1 = ns.fold (0) (_+_) //10
assert(s0 == s1)

Agree with other answers. thought of giving a simple illustrative example:
object MyClass {
def main(args: Array[String]) {
val numbers = List(5, 4, 8, 6, 2)
val a = numbers.fold(0) { (z, i) =>
{
println("fold val1 " + z +" val2 " + i)
z + i
}
}
println(a)
val b = numbers.foldLeft(0) { (z, i) =>
println("foldleft val1 " + z +" val2 " + i)
z + i
}
println(b)
val c = numbers.foldRight(0) { (z, i) =>
println("fold right val1 " + z +" val2 " + i)
z + i
}
println(c)
}
}
Result is self explanatory :
fold val1 0 val2 5
fold val1 5 val2 4
fold val1 9 val2 8
fold val1 17 val2 6
fold val1 23 val2 2
25
foldleft val1 0 val2 5
foldleft val1 5 val2 4
foldleft val1 9 val2 8
foldleft val1 17 val2 6
foldleft val1 23 val2 2
25
fold right val1 2 val2 0
fold right val1 6 val2 2
fold right val1 8 val2 8
fold right val1 4 val2 16
fold right val1 5 val2 20
25

There is two way to solve problems, iterative and recursive. Let's understand by a simple example.let's write a function to sum till the given number.
For example if I give input as 5, I should get 15 as output, as mentioned below.
Input: 5
Output: (1+2+3+4+5) = 15
Iterative Solution.
iterate through 1 to 5 and sum each element.
def sumNumber(num: Int): Long = {
var sum=0
for(i <- 1 to num){
sum+=i
}
sum
}
Recursive Solution
break down the bigger problem into smaller problems and solve them.
def sumNumberRec(num:Int, sum:Int=0): Long = {
if(num == 0){
sum
}else{
val newNum = num - 1
val newSum = sum + num
sumNumberRec(newNum, newSum)
}
}
FoldLeft: is a iterative solution
FoldRight: is a recursive solution
I am not sure if they have memoization to improve the complexity.
And so, if you run the foldRight and FoldLeft on the small list, both will give you a result with similar performance.
However, if you will try to run a FoldRight on Long List it might throw a StackOverFlow error (depends on your memory)
Check the following screenshot, where foldLeft ran without error, however foldRight on same list gave OutofMemmory Error.

fold() does parallel processing so does not guarantee the processing order.
where as foldLeft and foldRight process the items in sequentially for left to right (in case of foldLeft) or right to left (in case of foldRight)
Examples of sum the list -
val numList = List(1, 2, 3, 4, 5)
val r1 = numList.par.fold(0)((acc, value) => {
println("adding accumulator=" + acc + ", value=" + value + " => " + (acc + value))
acc + value
})
println("fold(): " + r1)
println("#######################")
/*
* You can see from the output that,
* fold process the elements of parallel collection in parallel
* So it is parallel not linear operation.
*
* adding accumulator=0, value=4 => 4
* adding accumulator=0, value=3 => 3
* adding accumulator=0, value=1 => 1
* adding accumulator=0, value=5 => 5
* adding accumulator=4, value=5 => 9
* adding accumulator=0, value=2 => 2
* adding accumulator=3, value=9 => 12
* adding accumulator=1, value=2 => 3
* adding accumulator=3, value=12 => 15
* fold(): 15
*/
val r2 = numList.par.foldLeft(0)((acc, value) => {
println("adding accumulator=" + acc + ", value=" + value + " => " + (acc + value))
acc + value
})
println("foldLeft(): " + r2)
println("#######################")
/*
* You can see that foldLeft
* picks elements from left to right.
* It means foldLeft does sequence operation
*
* adding accumulator=0, value=1 => 1
* adding accumulator=1, value=2 => 3
* adding accumulator=3, value=3 => 6
* adding accumulator=6, value=4 => 10
* adding accumulator=10, value=5 => 15
* foldLeft(): 15
* #######################
*/
// --> Note in foldRight second arguments is accumulated one.
val r3 = numList.par.foldRight(0)((value, acc) => {
println("adding value=" + value + ", acc=" + acc + " => " + (value + acc))
acc + value
})
println("foldRight(): " + r3)
println("#######################")
/*
* You can see that foldRight
* picks elements from right to left.
* It means foldRight does sequence operation.
*
* adding value=5, acc=0 => 5
* adding value=4, acc=5 => 9
* adding value=3, acc=9 => 12
* adding value=2, acc=12 => 14
* adding value=1, acc=14 => 15
* foldRight(): 15
* #######################
*/

Related

understanding aggregate in Scala

I am trying to understand aggregate in Scala and with one example, i understood the logic, but the result of second one i tried confused me.
Please let me know, where i went wrong.
Code:
val list1 = List("This", "is", "an", "example");
val b = list1.aggregate(1)(_ * _.length(), _ * _)
1 * "This".length = 4
1 * "is".length = 2
1 * "an".length = 2
1 * "example".length = 7
4 * 2 = 8 , 2 * 7 = 14
8 * 14 = 112
the output also came as 112.
but for the below,
val c = list1.aggregate(1)(_ * _.length(), _ + _)
I Thought it will be like this.
4, 2, 2, 7
4 + 2 = 6
2 + 7 = 9
6 + 9 = 15,
but the output still came as 112.
It is ideally doing whatever the operation i mentioned at seqop, here _ * _.length
Could you please explain or correct me where i went wrong.?
aggregate should be used to compute only associative and commutative operations. Let's look at the signature of the function :
def aggregate[B](z: ⇒ B)(seqop: (B, A) ⇒ B, combop: (B, B) ⇒ B): B
B can be seen as an accumulator (and will be your output). You give an initial output value, then the first function is how to add a value A to this accumulator and the second is how to merge 2 accumulators. Scala "chooses" a way to aggregate your collection but if your aggregation is not associative and commutative the output is not deterministic because the order matter. Look at this example :
val l = List(1, 2, 3, 4)
l.aggregate(0)(_ + _, _ * _)
If we create one accumulator and then aggregate all the values we get 1 + 2 + 3 + 4 = 10 but if we decide to parallelize the process by splitting the list in halves we could have (1 + 2) * (3 + 4) = 21.
So now what happens in reality is that for List aggregate is the same as foldLeft which explains why changing your second function didn't change the output. But where aggregate can be useful is in Spark for example or other distributed environments where it may be useful to do the folding on each partition independently and then combine the results with the second function.

Fold left and fold right

I am trying to learn how to use fold left and fold right. This is my first time learning functional programming. I am having trouble understanding when to use fold left and when to use fold right. It seems to me that a lot of the time the two functions are interchangeable. For example (in Scala)the two functions:
val nums = List(1, 2, 3, 4, 5)
val sum1 = nums.foldLeft(0) { (total, n) =>
total + n
}
val sum2 = nums.foldRight(0) {(total, n) =>
total + n
}
both yield the same result. Why and when would I choose one or the other?
foldleft and foldright differ in the way the function is nested.
foldleft: (((...) + a) + a) + a
foldright: a + (a + (a + (...)))
Since the function you are using is addition, both of them give the same result. Try using subtraction.
Moreover, the motivation to use fold(left/right) is not the result - in most of the cases, both yield the same result. It depends on which you you want your function to be aggregated.
Since the operator you are using is associated & commutative operator means a + b = b + a that's why leftFold and rightFold worked equivalent but it's not the equivalent in general as you can visualised by below examples where operator(+) is not associative & commutative operation i.e in case of string concatenation '+' operator is not associative & commutative means 'a' + 'b' != 'b' + 'a'
val listString = List("a", "b", "c") // : List[String] = List(a,b,c)
val leftFoldValue = listString.foldLeft("z")((el, acc) => el + acc) // : String = zabc
val rightFoldValue = listString.foldRight("z")((el, acc) => el + acc) // : abcz
OR in shorthand ways
val leftFoldValue = listString.foldLeft("z")(_ + _) // : String = zabc
val rightFoldValue = listString.foldRight("z")(_ + _) // : String = abcz
Explanation:
leftFold is worked as ( ( ('z' + 'a') + 'b') + 'c') = ( ('za' + 'b') + 'c') = ('zab' + 'c') = 'zabc'
and rightFold as ('a' + ('b' + ('c' + 'z'))) = ('a' + ('b' + 'cz')) = ('a' + 'bcz') = 'abcz'
So in short for operators that are associative and commutative, foldLeft and
foldRight are equivalent (even though there may be a difference in
efficiency).
But sometimes, only one of the two operators is appropriate.

Tracing execution of calculation of Fibonacci using Scala Streams

I'm a functional programming/scala newbie. I have been trying to get my head wrapped around the following code snippet and output produced.
def fib:Stream[Int] = {
Stream.cons(1,
Stream.cons(2,
(fib zip fib.tail) map {case (x, y) => println("%s + %s".format(x, y)); x + y}))
}
Output Trace:
scala> fib take 4 foreach println
1
2
1 + 2
3
1 + 2 <-- Why this ?????
2 + 3
5
I do not understand how 1 + 2 is evaluated for the calculation of result 5.
In theory, I do understand that def should force re calculation of fib but I'm not able to locate where in the execution trace this could happen.
I would like to step u guys through my understanding
Output( My understanding):
1
This is the head, trivial
2
This is the tail of the first Cons in Cons( 1, Cons( 2, fn ) ). Trivial.
1 + 2
(fib zip fib.tail) map {case (x, y) => println("%s + %s".format(x, y)); x + y}))
first element of fib is 1
first element of fib.tail is 2
Hence 1 + 2 is printed.
The zip operation on the Stream does the following
Cons( ( this.head, that.head), this.tail zip that.tail ) # this is fib and that is fib.tail. Also remember that this.tail starts from 2 and that.tail would start from 3. This new Stream forms an input to the map operation.
The map operation does the following
cons(f(head), tail map f ) # In this case tail is a stream defined in the previous step and it's not evaluated.
So, in the next iteration when tail map f is evaluated shouldn't just 2 + 3 be printed ? I don't understand why 1 + 2 is first printed
:( :( :(
Is there something obvious I'm missing ?
A coding for Fibonacci proposed in https://stackoverflow.com/a/20737241/3189923 with verbosity added here for tracing execution,
val fibs: Stream[Int] = 0 #:: fibs.scanLeft(1)((a,b) => {
println(s"$a + $b = ${a+b}")
a+b
})
Then, for instance,
scala> fibs(7)
1 + 0 = 1
1 + 1 = 2
2 + 1 = 3
3 + 2 = 5
5 + 3 = 8
8 + 5 = 13
res38: Int = 13

How to fix my Fibonacci stream in Scala

I defined a function to return Fibonacci stream as follows:
def fib:Stream[Int] = {
Stream.cons(1,
Stream.cons(2,
(fib zip fib.tail) map {case (x, y) => println("%s + %s".format(x, y)); x + y}))
}
The functions work ok but it looks inefficient (see the output below)
scala> fib take 5 foreach println
1
2
1 + 2
3
1 + 2
2 + 3
5
1 + 2
1 + 2
2 + 3
3 + 5
8
So, it looks like the function calculates the n-th fibonacci number from the very beginning. Is it correct? How would you fix it?
That is because you have used a def. Try using a val:
lazy val fib: Stream[Int]
= 1 #:: 2 #:: (fib zip fib.tail map { case (x, y) => x + y })
Basically a def is a method; in your example you are calling the method each time and each time the method call constructs a new stream. The distinction between def and val has been covered on SO before, so I won't go into detail here. If you are from a Java background, it should be pretty clear.
This is another nice thing about scala; in Java, methods may be recursive but types and values may not be. In scala both values and types can be recursive.
You can do it the other way:
lazy val fibs = {
def f(a: Int, b: Int): Stream[Int] = a #:: f(b, a + b)
f(0, 1)
}

Suggest a cleaner functional way

Here is some imperative code:
var sum = 0
val spacing = 6
var x = spacing
for(i <- 1 to 10) {
sum += x * x
x += spacing
}
Here are two of my attempts to "functionalize" the above code:
// Attempt 1
(1 to 10).foldLeft((0, 6)) {
case((sum, x), _) => (sum + x * x, x + spacing)
}
// Attempt 2
Stream.iterate ((0, 6)) { case (sum, x) => (sum + x * x, x + spacing) }.take(11).last
I think there might be a cleaner and better functional way to do this. What would be that?
PS: Please note that the above is just an example code intended to illustrate the problem; it is not from the real application code.
Replacing 10 by N, you have spacing * spacing * N * (N + 1) * (2 * N + 1) / 6
This is by noting that you're summing (spacing * i)^2 for the range 1..N. This sum factorizes as spacing^2 * (1^2 + 2^2 + ... + N^2), and the latter sum is well-known to be N * (N + 1) * (2 * N + 1) / 6 (see Square Pyramidal Number)
I actually like idea of lazy sequences in this case. You can split your algorithm in 2 logical steps.
At first you want to work on all natural numbers (ok.. not all, but up to max int), so you define them like this:
val naturals = 0 to Int.MaxValue
Then you need to define knowledge about how numbers, that you want to sum, can be calculated:
val myDoubles = (naturals by 6 tail).view map (x => x * x)
And putting this all together:
val naturals = 0 to Int.MaxValue
val myDoubles = (naturals by 6 tail).view map (x => x * x)
val mySum = myDoubles take 10 sum
I think it's the way mathematician will approach this problem. And because all collections are lazily evaluated - you will not get out of memory.
Edit
If you want to develop idea of mathematical notation further, you can actually define this implicit conversion:
implicit def math[T, R](f: T => R) = new {
def ∀(range: Traversable[T]) = range.view map f
}
and then define myDoubles like this:
val myDoubles = ((x: Int) => x * x) ∀ (naturals by 6 tail)
My personal favourite would have to be:
val x = (6 to 60 by 6) map {x => x*x} sum
Or given spacing as an input variable:
val x = (spacing to 10*spacing by spacing) map {x => x*x} sum
or
val x = (1 to 10) map (spacing*) map {x => x*x} sum
There are two different directions to go. If you want to express yourself, assuming that you can't use the built-in range function (because you actually want something more complicated):
Iterator.iterate(spacing)(x => x+spacing).take(10).map(x => x*x).foldLeft(0)(_ + _)
This is a very general pattern: specify what you start with and how to get the next given the previous; then take the number of items you need; then transform them somehow; then combine them into a single answer. There are shortcuts for almost all of these in simple cases (e.g. the last fold is sum) but this is a way to do it generally.
But I also wonder--what is wrong with the mutable imperative approach for maximal speed? It's really quite clear, and Scala lets you mix the two styles on purpose:
var x = spacing
val last = spacing*10
val sum = 0
while (x <= last) {
sum += x*x
x += spacing
}
(Note that the for is slower than while since the Scala compiler transforms for loops to a construct of maximum generality, not maximum speed.)
Here's a straightforward translation of the loop you wrote to a tail-recursive function, in an SML-like syntax.
val spacing = 6
fun loop (sum: int, x: int, i: int): int =
if i > 0 then loop (sum+x*x, x+spacing, i-1)
else sum
val sum = loop (0, spacing, 10)
Is this what you were looking for? (What do you mean by a "cleaner" and "better" way?)
What about this?
def toSquare(i: Int) = i * i
val spacing = 6
val spaceMultiples = (1 to 10) map (spacing *)
val squares = spaceMultiples map toSquare
println(squares.sum)
You have to split your code in small parts. This can improve readability a lot.
Here is a one-liner:
(0 to 10).reduceLeft((u,v)=>u + spacing*spacing*v*v)
Note that you need to start with 0 in order to get the correct result (else the first value 6 would be added only, but not squared).
Another option is to generate the squares first:
(1 to 2*10 by 2).scanLeft(0)(_+_).sum*spacing*spacing