Using EMF objects as keys - eclipse

Is it possible to have EMF objects implement hashCode and equals? I would like to be able to use a model object as a key in a HashMap.

EObject's javadoc is clear about that. An EObject may not specialize hashCode or equals. However, you can use them in maps as long as you are aware of the identity semantics of Object#equals(..) and #hashCode.

I'm by no means an EMF expert but you could create a wrapper object for the EObject and implement the equals and hashCode methods in the wrapper in terms of the attributes from the EObject you are interested in and then use that wrapper as the key. That would force you always to instantiate a wrapper object when searching the map, but depending on the usage pattern that may not be too hateful.
Be aware that using mutable objects as keys in a map is tricky. If the object is mutated after being used as a key in such a way that the hash code changes then it may be difficult to find the key again later.

You can use EcoreUtil.equals(), if the algorithm behind the method suits your use case.

Or you can implement (generate) equals / hashCode methods for each EMF-*Impl class. You have to insert a #generated not comment above the method header.

Related

How can I express in Scala class configuration option?

In the title I provided use-case for the following behavior: the field should be publicly mutable and immutable for the class's own methods. Consider also that I essentially want single line per field, because the number of fields may be great. Also I want to have no-arg constructor.
The nearest I can think of that could satisfy what you want is to have a trait which only has accessor methods, and an implementation class that allows mutations. Pass the class type around wherever you need to be able to alter values, but reference it only as the trait wherever the values should be unalterable.

Intersystems Cache - Correct syntax for %ListOfObjects

The documentation says this is allowed:
ClassMethod GetContacts() As %ListOfObjects(ELEMENTTYPE="ContactDB.Contact")
[WebMethod]
I want to do this:
Property Permissions As %ListOfObjects(ELEMENTTYPE="MyPackage.MyClass");
I get an error:
ERROR #5480: Property parameter not declared:
MyPackage.Myclass:ELEMENTTYPE
So, do I really have to create a new class and set the ELEMENTTYPE parameter in it for each list I need?
Correct syntax for %ListOfObjects in properties is this one
Property Permissions As list of MyPackage.MyClass;
Yes, a property does sometimes work differently than a method when it comes to types. That is an issue here, in that you can set a class parameter of the return value of a method declaration in a straightforward way, but that doesn't always work for class parameters on the class of a property.
I don't think the way it does work is documented completely, but here are some of my observations:
You can put in class parameters on a property if the type of the property is a data-type (which are often treated differently than objects).
If you look at the %XML.Adaptor class it has the keyword assignment statement
PropertyClass = %XML.PropertyParameters
This appears to add its parameters to all the properties of the class that declares it as its PropertyClass. This appears to be an example of Intersystems wanting to implement something (an XML adaptor) and realizing the implementation of objects didn't provide it cleanly, so they hacked something new into the class compiler. I can't really find much documentation so it isn't clear if its considered a usable API or an implementation detail subject to breakage.
You might be able to hack something this way - I've never tried anything similar.
A possibly simpler work around might be to initialize the Permissions property in %OnNew and %OnOpen. You will probably want a zero element array at that point anyway, rather than a null.
If you look at the implementation of %ListOfObjects you can see that the class parameter which you are trying to set simply provides a default value for the ElementType property. So after you create an instance of %ListOfObjects you could just set it's ElementType property to the proper element type.
This is a bit annoying, because you have to remember to do it every time by hand, and you might forget. Or a maintainer down the road might not now to do it.
You might hope to maybe make it a little less annoying by creating a generator method that initializes all your properties that need it. This would be easy if Intersystems had some decent system of annotating properties with arbitrary values (so you could know what ElementType to use for each property). But they don't, so you would have to do something like roll your own annotations using an XData block or a class method. This probably isn't worth it unless you have more use cases for annotations than just this one, so I would just do it by hand until that happens, if it ever does.

C# dynamic type how to access some methods and slef tracking entities

I have use the type dynamic, a new type in .NET 4.0.
I want to use a dynamic type because I want to use some types that in advance I don't know what type is, but I know that all this possible type has some common methods.
In my case, I am using self tracking entities in entity framework 4.0, and I know that all the entities has the methods markedXXX (to set the state of the entity).
Through the dynamic object that I created, I can access and set the properties of one of this entities, but when I try to execute the MarkedAsXXX method I get an exception that says that the object has not definied the method.
I would like to know how to access to this methods. Is it possible?
Because I have a function that can access to the original values and set this values to the current one, but I need to set the entity as Unchenged.
Thanks.
I want to use a dynamic type because I want to use some types that in advance I don't know what type is, but I know that all this possible type has some common methods.
That suggests you should create an interface with those common methods, and make all the relevant types implement the interface.
Through the dynamic object that I created, I can access and set the properties of one of this entities, but when I try to execute the MarkedAsXXX method I get an exception that says that the object has not defined the method.
It's possible that this is due to explicit interface implementation. If the types have those methods declared as public methods in the normal way, it should be fine.
If you really want to use dynamic typing with these types, is there some base interface which declares the MarkedAsXXX methods, which you could cast the objects to before calling those methods? (I'm not familiar with the entity framework, so I don't know the details of those methods.)
Basically, I would try to avoid dynamic typing unless you really need it, partly because of edge cases like this - but if explicit interface implementation is the cause, then casting to that interface should be fine.
If you define an interface to the dynamically generated classes you can call the methods without the hassle of reflection calling.

What is exactly the point of auto-generating getters/setters for object fields in Scala?

As we know, Scala generates getters and setters automatically for any public field and make the actual field variable private. Why is it better than just making the field public ?
For one this allows swapping a public var/val with a (couple of) def(s) and still maintain binary compatibility. Secondly it allows overriding a var/val in derived classes.
First, keeping the field public allows a client to read and write the field. Since it's beneficial to have immutable objects, I'd recommend to make the field read only (which you can achieve in Scala by declaring it as "val" rather than "var").
Now back to your actual question. Scala allows you to define your own setters and getters if you need more than the trivial versions. This is useful to maintain invariants. For setters you might want to check the value the field is set to. If you keep the field itself public, you have no chance to do so.
This is also useful for fields declared as "val". Assume you have a field of type Array[X] to represent the internal state of your class. A client could now get a reference to this array and modify it--again you have no chance to ensure the invariant is maintained. But since you can define your own getter you can return a copy of the actual array.
The same argument applies when you make a field of a reference type "final public" in Java--clients can't reset the reference but still modify the object the reference points to.
On a related note: accessing a field via getters in Scala looks like accessing the field directly. The nice thing about this is that it allows to make accessing a field and calling a method without parameters on the object look like the same thing. So if you decide you don't want to store a value in a field anymore but calculate it on the fly, the client does not have to care because it looks like the same thing to him--this is known as the Uniform Access Principle
In short: the Uniform Access Principle.
You can use a val to implement an abstract method from a superclass. Imagine the following definition from some imaginary graphics package:
abstract class circle {
def bounds: Rectangle
def centre: Point
def radius: Double
}
There are two possible subclasses, one where the circle is defined in terms of a bounding box, and one where it's defined in terms of the centre and radius. Thanks to the UAP, details of the implementation can be completely abstracted away, and easily changed.
There's also a third possibility: lazy vals. These would be very useful to avoid recalculating the bounds of our circle again and again, but it's hard to imagine how lazy vals could be implemented without the uniform access principle.

In Scala, plural object name for a container of public static methods?

I've written a Scala trait, named Cache[A,B], to provide a caching API. The Cache has the following methods, asyncGet(), asyncPut(), asyncPutIfAbsent(), asyncRemove().
I'm going to have a few static methods, such as getOrElseUpdate(key: A)(op: => B). I don't want methods like this as abstract defs in the Cache trait because I don't want each Cache implementation to have to provide an implementation for it, when it can be written once using the async*() methods.
In looking at Google Guava and parts of the Java library, they place public static functions in a class that is the plural of the interface name, so "Caches" would be the name I would use.
I like this naming scheme actually, even though I could use a Cache companion object. In looking at much of my code, many of my companion objects contain private val's or def's, so users of my API then need to look through the companion object to see what they can use from there, or anything for that matter.
By having a object named "Caches" is consistent with Java and also makes it clear that there's only public functions in there. I'm leaning towards using "object Caches" instead of "object Cache".
So what do people think?
Scala's traits are not just a different name for Java's interfaces. They may have concrete (implemented) members, both values (val and var) and methods. So if there's a unified / generalized / shared implementation of a method, it can be placed in a trait and need not be replicated or factored into a separate class.
I think the mistake starts with "going to have a few static methods". Why have static methods? If you explain why you need static methods, it will help figure out what the design should be.