Multiple sockets required for Zeroconf/bonjour implementation? - sockets

Is more than one socket required to implement Zeroconf/bonjour? I'm implementing bonjour on firmware and my chip only supports one socket.
Seems to me at least two would be necessary:
- One socket to monitor the multicast queries and announcements
- At least one more socket to resolve and connect to clients

To quote the rfc:
When this document uses the term "Multicast DNS", it should be taken
to mean: "Clients performing DNS-like queries for DNS-like resource
records by sending DNS-like UDP query and response packets over IP
Multicast to UDP port 5353."
To fully implement mDNS (Bonjour), you need an open socket bound to 224.0.0.251 (the reserved IPv4 address) and port 5353 open to receive queries.
Obviously this just covers the Zeroconf implementation- whatever service you're advertising will require more ports & sockets open.

Depending on what you're trying to achieve, you can use the socket to listen for multicast service announcements, pick a service (e.g. offer a list to the user), close the socket then reuse it to connect to the service. You don't need to keep listening to service announcements if you've already chosen one to choose, and if the service you're using is withdrawn (e.g. the device supplying it is turned off) then you can go back to listening to multicast to find an alternative.

Related

Difference between "tcp/socket" vs "tcp/ip"

What is the difference between a "tcp/socket" and "tcp/ip" connexion?
When you say that you use "tcp/ip", do you necessarily use a "tcp/socket"?
Thanks!
A socket is a general communication means provided by your
operating system.
There are many kinds of them, for very distinct purposes
(not only networking).
I guess that when you think about tcp/socket, you mean a
socket dedicated to the TCP protocol.
TCP/IP can be seen as two different things, depending on the context.
It can be the TCP/IP network stack as a whole: not only the TCP and IP
specific protocols but the set of protocols (and implementations) we
find around these.
Of course, the other way to see TCP/IP is to consider only the TCP
transport protocol relying on the IP network protocol.
The various operating systems implement many protocols
in the TCP/IP stack.
To use them, a programmer asks his/her operating system
a specific resource: a socket.
It's difficult to say more with few words.
Some books or online documentation could help go further.
I think you missing something in the question. Anyway in short...
TCP/IP is basically name given to protocol we (networking devices) follow it forms the fundamental of todays internet. It involves agreement between two devices how the want ro communicate eg. Which segment of a frame has what information as in the end its all just 10...
There are 5 layers (some argue 4) in this model one layer is Network Layer right at the middle of all and it generally uses IPv4.And just above this is our Transport Layer which may use TCP or UDP as protocol depending on service you want. So thats the summary of TCP/ IP as the most used set of protocols of all.
When connecting to a remote server your browser needs to know what kind of service he is about to get from that server eg. a video mail or file transfer or just a http page. Thats when a TCP/Socket comes into picture where there is a port no assigned for every service. Eg port 443 is for https and so on. All you need to do is open a socket connection over that port number on that machine
Remember if a particular port of a server is not in LISTEN mode you cannot connect to that application via that port
Eg. If a server serves its webpage it might not allow you to connect its port responsible for FTP.

Can a UDP multicast server send packets outside LAN?

I'm in the process of making a multiplayer game, where the players' movements are sent over the network and their positions are stored in the server. I've been told that UDP would be best since it doesn't rely on constant connection and it won't matter if the client misses a packet. The clients could be on any router, not necessarily within the server's LAN.
Is it possible to set up a server that the clients can connect to that will send all of them periodic updates of the positions of nearby objects/players?
I don't want to have to send packets to each individual client, and I heard multicasting can solve this problem, but every example I've seen only sends packets over a local network. Can I multicast past routers, and if so, how can I do that in Java? (And explain it to me like I have no idea what I'm doing, which is mostly true)
Ex.
Server has IP address 71.10.200.133
Client A has IP address 38.49.339.293
Client B has IP address 37.28.487.388
...
Client Z has IP address 43.38.382.949
Client A sends an update about the player's position to Server
Server sends update to B-Z without iterating a packet to each individual client. How do I accomplish this (if it's possible)?
Multicasts will traverse a router if and only if the router allows it. Unless you're in control of all the routers between you and your clients, the answer to your question is 'no'.
Multicast packets are broadcasts, thus they reach each node on that subnet. For you to send a multicast packet out on the web is not an effecient nor smart way of sending data.
For LAN based traffic:
Multicast is fine
But, for internet traffic I would suggest making a:
UDPClient
or
TCPClient
for internet based traffic and possibly multicast for LAN based (to mix things up a bit).
For internet traffic: Keep in mind, clients will need to initiate the connection first since most routers (household) have a firewall blocking all NEW outside-to-in traffic. So create a socket to listen over a designated port/ports for any incoming connections and from there on use which ever method of packet broadcasting/sending you like
You do also have the option of using Multicast proxies or Layer 2 VPNs if you have the capabilities. L2TP, https://en.wikipedia.org/wiki/Layer_2_Tunneling_Protocol
A layer 2 VPN would relay unicast and multicast packets.
That would basically allow you to control the routers as EJP suggested above.
This questions also 3 year old so you've probably already figured a way to do it by now.

Lan chat design

I'm in the process of trying to write a chat application and I have a few issues
that I trying to work out. The application is basically a chat application that works on a Lan. One client acts as the
host and other clients can connect to the host and publicly chat among themselves. I want also the option of a client starting
a private chat with an already connected client. So what is the best way for this to happen. For example should the request message (which
contains the ip address of client) route through the host and then if the requested client wants to connect , then they initiate the connection
using ip of the requesting client. Should this also be on a separate port number. Does it matter if your application uses a number of ports.
Or, when ever a client connects to a host, the host should send them a list of users with there ip addresses, and then the client can
attempt a connection with the other client for a private chat.
Hope this all makes sense. Any help would be appreciated
Thanks
If you are just interested in a quick-and-dirty chat facility that only needs to work over a LAN, I'd suggest having all clients send and receive broadcast UDP packets on a single well-known port number. Then no server is necessary at all, and thus no discovery is necessary either, and things are a lot simpler.
If you really want to go the client-server route, though, you should have your server (aka host) machine accept TCP connections on a single well-known port, and then have it use select() or poll() to multiplex the incoming TCP connections and forward any data that comes in from each incoming TCP socket to all of the others sockets. Clients can connect via TCP to the server at this well-known port, but the clients will have to have some way of knowing what IP address to connect to... either from having the user type in the IP address of the server, or by some discovery mechanism (broadcast UDP packets could be used to implement that). This way is a lot more work though.
I'm all for creating my own but depending on time constraints sometimes I look for alternatives like this I used it in a company I worked at before. It's really good. But if you decide to make your own you first have to map out a logic, structure, Database and so on before you even think about code..

Broadcasting ip:port by socket server

I'm trying to find a way for client to know socket server ip:port, without explicitly defining it. Generally I have a socket server running on portable device that's connect to network over DHCP (via WiFi), and ideally clients should be able to find it automaticaly.
So I guess a question is whether socket server can somehow broadcast it's address over local network? I think UPnP can do this, but I'd rather not get into it.
I'm quite sure that this question was asked on Stack lot's of times, but I could find proper keywords to search for it.
One method of doing this is via UDP broadcast packets. See beej's guide if you're using BSD sockets. And here is Microsoft's version of the same.
Assuming all the clients of the application are on the same side of a router then a broadcast address of 255.255.255.255 (or ff02::1 for IPv6) should be more than adequate.
Multicast is another option, but if this is a LAN-only thing I don't think that's necessary.
Suggestion
Pick a UDP port number (say for the sake of an example we pick 1667). The client should listen to UDP messages on 255.255.255.255:1667 (or whatever the equivalent is. e.g.: IPEndPoint(IPAddress.Any, 1667)). The server should broadcast messages on the same address.
Format Suggestion
UDP Packet: First four bytes as a magic number, next four bytes an IPv4 address (and you might want to add other things like a server name).
The magic number is just in case there is a collision with another application using the same port. Check both the length of the packet and the magic number.
Server would broadcast the packet at something like 30 second time intervals. (Alternatively you could have the server send a response only when a client sends a request via broadcast.)
Some options are:
DNS-SD (which seems to translate to "Apple Bonjour"): it has libraries on macOS, but it needs to install the Bonjour service on Windows. I don't know the Linux situation for this. So, it's multi-platform but you need external libraries.
UDP broadcast or multicast
Some other fancy things like Ethernet broadcast, raw sockets, ...
For your case (clients on a WiFi network), a UDP broadcast packet would suffice, it's multi-platform, and not too difficult to implement from the ground up.
Choosing this option, the two main algorithms are:
The server(s) send an "announce" broadcast packet, with clients listening to the broadcast address. Once clients receive the "announce" packet, they know about the server address. Now they can send UDP packets to the server (which will discover their addresses for sending a reply), or connect using TCP.
The client(s) send a "discover" broadcast packet, with the server(s) listening to the broadcast address. Once the server(s) receive the "discover" packet, it can reply directly to it with an "announce" UDP packet.
One or the other could be better for your application, it depends.
Please consider these arguments:
Servers usually listen to requests and send replies
A server that sends regular "announce" broadcast packets over a WiFi network, for a client that may arrive or not, wastes the network bandwidth, while a client knows exactly when it needs to poll for available servers, and stop once it's done.
As a mix of the two options, a server could send a "gratuitous announce" broadcast packet once it comes up, and then it can listen for "discover" broadcast requests from clients, replying directly to one of them using a regular UDP packet.
From here, the client can proceed as needed: send direct requests with UDP to the server, connect to a TCP address:port provided in the "announce" packet, ...
(this is the scheme I used in an application I am working on)

How do I design a peer-to-peer app that avoids using listening sockets?

I've noticed that if you want to write an application that utilizes listening sockets, you need to create port forwarding rules on your router. If I want to connect two computers without either one of the the computers messing about with router settings, is there a way that I can get the two clients to connect to each other without either of them using listening sockets? There would need to be another server somewhere else telling them to connect but is it possible?
Some clarifications, and an answer:
Routers don't care about, or handle ports, that is the role of a firewall, which do port forwarding. The router/firewall combined device most of us have at home adds to the common misunderstanding.
Can you connect two computers without ServerSocket? No. You can use UDP (a stateless, connectionless communication protocol), but the role of a ServerSocket is to "listen" for incoming connection requests, and generate a Socket from those requests, which creates a communications channel between two endpoints. A Socket has both an InputStream and an OutputStream, so it can both read at write at either end. At that point (once the connection is made), the distinction between client/server is arbitrary, since a Socket is a two-way connection object, which allows both sides to send/receive.
What about proxying? Doesn't that allow connections between two computers without a ServerSocket? Well, no, because the server that's doing the proxying still has to be using a ServerSocket. Depending on what application you're trying to implement, this might be the way to go, or or might just add overhead. Even if there were "another server somewhere else telling them to connect", somebody has to listen for a connection request, which is the job of the ServerSocket.
If connections are happening over already open ports (most publicly accessible servers have ports <1024 not blocked by firewalls, but exceptions exist), then you shouldn't need to change firewall settings to get the connection to work.
So, to reiterate, the ONLY role of a ServerSocket (as far as your question is concerned) is to listen for incoming connection requests, and from those requests, create a Socket, which is a two-way communications channel between the two end points.
To answer the question, "How do I design a peer-to-peer app that avoids using listening sockets?", you don't. In the case of something like Vuze, the software acts as both client and server simultaneously, hence the term "peer", vs. "client" or "server" alone. In Vuze every client is a server, and every server (except for the tracker) is a client.
If you need a TCP connection between the 2 computers and both of them are behind routers (and you don't want to set up port forwarding) I think the only other possibility you have is having a third server somewhere that isn't behind a firewall running a ServerSocket and accepting connections between your 2 other computers and proxying communications between the 2. You can't establish a TCP Connection between the 2 without one listening to a socket and the other connecting to it.
Q: If I want to connect two computers without either one of the the
computers messing about with router settings, is there a way that I
can get the two clients to connect to each other
Yes: have the server listen on an open port :)