Can a UDP multicast server send packets outside LAN? - sockets

I'm in the process of making a multiplayer game, where the players' movements are sent over the network and their positions are stored in the server. I've been told that UDP would be best since it doesn't rely on constant connection and it won't matter if the client misses a packet. The clients could be on any router, not necessarily within the server's LAN.
Is it possible to set up a server that the clients can connect to that will send all of them periodic updates of the positions of nearby objects/players?
I don't want to have to send packets to each individual client, and I heard multicasting can solve this problem, but every example I've seen only sends packets over a local network. Can I multicast past routers, and if so, how can I do that in Java? (And explain it to me like I have no idea what I'm doing, which is mostly true)
Ex.
Server has IP address 71.10.200.133
Client A has IP address 38.49.339.293
Client B has IP address 37.28.487.388
...
Client Z has IP address 43.38.382.949
Client A sends an update about the player's position to Server
Server sends update to B-Z without iterating a packet to each individual client. How do I accomplish this (if it's possible)?

Multicasts will traverse a router if and only if the router allows it. Unless you're in control of all the routers between you and your clients, the answer to your question is 'no'.

Multicast packets are broadcasts, thus they reach each node on that subnet. For you to send a multicast packet out on the web is not an effecient nor smart way of sending data.
For LAN based traffic:
Multicast is fine
But, for internet traffic I would suggest making a:
UDPClient
or
TCPClient
for internet based traffic and possibly multicast for LAN based (to mix things up a bit).
For internet traffic: Keep in mind, clients will need to initiate the connection first since most routers (household) have a firewall blocking all NEW outside-to-in traffic. So create a socket to listen over a designated port/ports for any incoming connections and from there on use which ever method of packet broadcasting/sending you like

You do also have the option of using Multicast proxies or Layer 2 VPNs if you have the capabilities. L2TP, https://en.wikipedia.org/wiki/Layer_2_Tunneling_Protocol
A layer 2 VPN would relay unicast and multicast packets.
That would basically allow you to control the routers as EJP suggested above.
This questions also 3 year old so you've probably already figured a way to do it by now.

Related

Lan chat design

I'm in the process of trying to write a chat application and I have a few issues
that I trying to work out. The application is basically a chat application that works on a Lan. One client acts as the
host and other clients can connect to the host and publicly chat among themselves. I want also the option of a client starting
a private chat with an already connected client. So what is the best way for this to happen. For example should the request message (which
contains the ip address of client) route through the host and then if the requested client wants to connect , then they initiate the connection
using ip of the requesting client. Should this also be on a separate port number. Does it matter if your application uses a number of ports.
Or, when ever a client connects to a host, the host should send them a list of users with there ip addresses, and then the client can
attempt a connection with the other client for a private chat.
Hope this all makes sense. Any help would be appreciated
Thanks
If you are just interested in a quick-and-dirty chat facility that only needs to work over a LAN, I'd suggest having all clients send and receive broadcast UDP packets on a single well-known port number. Then no server is necessary at all, and thus no discovery is necessary either, and things are a lot simpler.
If you really want to go the client-server route, though, you should have your server (aka host) machine accept TCP connections on a single well-known port, and then have it use select() or poll() to multiplex the incoming TCP connections and forward any data that comes in from each incoming TCP socket to all of the others sockets. Clients can connect via TCP to the server at this well-known port, but the clients will have to have some way of knowing what IP address to connect to... either from having the user type in the IP address of the server, or by some discovery mechanism (broadcast UDP packets could be used to implement that). This way is a lot more work though.
I'm all for creating my own but depending on time constraints sometimes I look for alternatives like this I used it in a company I worked at before. It's really good. But if you decide to make your own you first have to map out a logic, structure, Database and so on before you even think about code..

Coordinating peer-to-peer messages using multicast, how to get receiving IP?

I have been working on a local LAN service which uses a multicast port to coordinate several machines. Each machine listens on the multicast port for instructions, and when a certain instruction is received, will send messages directly to other machines.
In other words the multicast port is used to coordinate peer-to-peer UDP messaging.
In practice this works quite well but there is a lingering issue related to correctly setting up these peer-to-peer transmissions. Basically, each machine needs to announce on the multicast port its own IP address, so that other machines know where to send messages when they wish to start a P2P transmission.
I realize that in general the idea of identifying the local IP is not necessarily sensible, but I don't see any other way-- the local receiving IP must be announced one way or another. At least I am not working on the internet, so in general I won't need to worry about NATs, just need to identify the local LAN IP. (No more than 1 hop for the multicast packets is allowed.)
I wanted to, if possible, determine the IP passively, i.e., without sending any messages.
I have been using code that calls getifaddrs(), which returns a linked list of NICs on the machine, and I scan this list for non-zero IP addresses and choose the first one.
In general this has worked okay, but we have had issues where for example a machine with both a wired and wifi connection are active, it will identify the wrong one, and the only work-around we found was to turn off the wifi.
Now, I imagine that a more reliable solution would be to send a message to the multicast telling other machines to report back with the source address of the message; that might allow to identify which IP is actually visible to the other machines on the net. Alternatively maybe even just looking at the multicast loopback message would work.
What do you think, are there any passive solutions to identify which address to use? If not, what's the best active solution?
I'm using POSIX socket API from C. Must work on Linux, OS X, Windows. (For Windows I have been using GetAdapterAddresses().)
Your question about how to get the address so you can advertise it right is looking at it from the wrong side. It's a losing proposition to try to guess what your address is. Better for the other side to detect it itself.
When a listening machine receives a message, it is probably doing do using recvfrom(2). The fifth argument is a buffer into which the kernel will store the address of the peer, if the underlying protocol offers it. Since you are using IP/UDP, the buffer should get filled in with a sockaddr_in showing the IP address of the sender.
I'd use the address on the interface I use to send the announcement multicast message -- on the wired interface announce the wired address and on the wireless interface announce the wireless address.
When all the receivers live on the wired side, they will never see the message on the wireless network.
When there is a bridge between the wired and the wireless network, add a second step in discovery for round-trip time estimation, and include a unique host ID in the announcement packet, so multiple routes to the same host can be detected and the best one chosen.
Also, it may be a good idea to add a configuration option to limit the service to certain interfaces.

Broadcasting ip:port by socket server

I'm trying to find a way for client to know socket server ip:port, without explicitly defining it. Generally I have a socket server running on portable device that's connect to network over DHCP (via WiFi), and ideally clients should be able to find it automaticaly.
So I guess a question is whether socket server can somehow broadcast it's address over local network? I think UPnP can do this, but I'd rather not get into it.
I'm quite sure that this question was asked on Stack lot's of times, but I could find proper keywords to search for it.
One method of doing this is via UDP broadcast packets. See beej's guide if you're using BSD sockets. And here is Microsoft's version of the same.
Assuming all the clients of the application are on the same side of a router then a broadcast address of 255.255.255.255 (or ff02::1 for IPv6) should be more than adequate.
Multicast is another option, but if this is a LAN-only thing I don't think that's necessary.
Suggestion
Pick a UDP port number (say for the sake of an example we pick 1667). The client should listen to UDP messages on 255.255.255.255:1667 (or whatever the equivalent is. e.g.: IPEndPoint(IPAddress.Any, 1667)). The server should broadcast messages on the same address.
Format Suggestion
UDP Packet: First four bytes as a magic number, next four bytes an IPv4 address (and you might want to add other things like a server name).
The magic number is just in case there is a collision with another application using the same port. Check both the length of the packet and the magic number.
Server would broadcast the packet at something like 30 second time intervals. (Alternatively you could have the server send a response only when a client sends a request via broadcast.)
Some options are:
DNS-SD (which seems to translate to "Apple Bonjour"): it has libraries on macOS, but it needs to install the Bonjour service on Windows. I don't know the Linux situation for this. So, it's multi-platform but you need external libraries.
UDP broadcast or multicast
Some other fancy things like Ethernet broadcast, raw sockets, ...
For your case (clients on a WiFi network), a UDP broadcast packet would suffice, it's multi-platform, and not too difficult to implement from the ground up.
Choosing this option, the two main algorithms are:
The server(s) send an "announce" broadcast packet, with clients listening to the broadcast address. Once clients receive the "announce" packet, they know about the server address. Now they can send UDP packets to the server (which will discover their addresses for sending a reply), or connect using TCP.
The client(s) send a "discover" broadcast packet, with the server(s) listening to the broadcast address. Once the server(s) receive the "discover" packet, it can reply directly to it with an "announce" UDP packet.
One or the other could be better for your application, it depends.
Please consider these arguments:
Servers usually listen to requests and send replies
A server that sends regular "announce" broadcast packets over a WiFi network, for a client that may arrive or not, wastes the network bandwidth, while a client knows exactly when it needs to poll for available servers, and stop once it's done.
As a mix of the two options, a server could send a "gratuitous announce" broadcast packet once it comes up, and then it can listen for "discover" broadcast requests from clients, replying directly to one of them using a regular UDP packet.
From here, the client can proceed as needed: send direct requests with UDP to the server, connect to a TCP address:port provided in the "announce" packet, ...
(this is the scheme I used in an application I am working on)

UDP for multiplayer game

I have no experience with sockets nor multiplayer programming.
I need to code a multiplayer mode for a game I made in c++. It's a puzzle game but the game mode will not be turn-based, it's more like cooperative.
I decided to use UDP, so I've read some tutorials, and all the samples I find decribes how to create a client that sends data and a server that receives it.
My game will be played by two players, and both will send and receive data to/from the other.
Do I need to code a client and a server?
Should I use the same socket to send and receive?
Should I send and receive data in the same port?
Thanks, I'm kind of lost.
Read how the masters did it:
http://www.bluesnews.com/abrash/chap70.shtml
Read the code:
git clone git://quake.git.sourceforge.net/gitroot/quake/quake
Open one UDP socket and use sendto and recvfrom. The following file contains the functions for the network client.
quake/libs/net/nc/net_udp.c
UDP_OpenSocket calls socket (PF_INET, SOCK_DGRAM, IPPROTO_UDP)
NET_SendPacket calls sendto
NET_GetPacket calls recvfrom
Do I need to code a client and a server?
It depends. For a two player game, with both computers on the same LAN, or both on the open Internet, you could simply have the two computers send packets to each other directly.
On the other hand, if you want your game to work across the Internet, when one or both players are behind a NAT and/or firewall, then you have the problem that the NAT and/or firewall will probably filter out the other player's incoming UDP packets, unless the local player goes to the trouble of setting up port-forwarding in their firewall... something that many users are not willing (or able) to do. In that case, you might be better off running a public server that both clients can connect to, which forwards data from one client to another. (You might also consider using TCP instead of UDP in that case, at least as a fallback, since TCP streams are in general likely to have fewer issues with firewalls than UDP packets)
Should I use the same socket to send and receive?
Should I send and receive data in the same port?
You don't have to, but you might as well -- there's no downside to using just a single socket and a single port, and it will simplify your code a bit.
Note that this answer is all about using UDP sockets. If you change your mind to use TCP sockets, it will almost all be irrelevant.
Do I need to code a client and a server?
Since you've chosen to to use UDP (a fair choice if your data isn't really important and benefits more from lower latency than reliable communication), you don't have much of a choice here: a "server" is a piece of code for receiving packets from the network, and your "client" is for sending packets into the network. UDP doesn't provide any mechanism for the server to communicate to the client (unlike TCP which establishes a 2 way socket). In this case, if you want to have two way communication between your two hosts, they'll each need server and client code.
Now, you could choose to use UDP broadcasts, where both clients listen and send on the broadcast address (usually 192.168.1.255 for home networks, but it can be anything and is configurable). This is slightly more complex to code for, but it would eliminate the need for client/server configuration and may be seen as more plug 'n play for your users. However, note that this will not work over the Internet.
Alternatively, you can create a hybrid method where hosts are discovered by broadcasting and listening for broadcasts, but then once the hosts are chosen you use host to host unicast sockets. You could provide fallback to manually specify network settings (remote host/port for each) so that it can work over the Internet.
Finally, you could provide a true "server" role that all clients connect to. The server would then know which clients connected to it and would in turn try to connect back to them. This is a server at a higher level, not at the socket level. Both hosts still need to have packet sending (client) and receiving (server) code.
Should I use the same socket to send and receive?
Well, since you're using UDP, you don't really have a choice. UDP doesn't establish any kind of persistent connection that they can communicate back and forth over. See the above point for more details.
Should I send and receive data in the same port?
In light of the above question, your question may be better phrased "should each host listen on the same port?". I think that would certainly make your coding easier, but it doesn't have to. If you don't and you opt for the 3rd option of the first point, you'll need a "connect back to me on this port" datafield in the "client's" first message to the server.

UDP Server Discovery - Should clients send multicasts to find server or should server send regular beacon?

I have clients that need to all connect to a single server process. I am using UDP discovery for the clients to find the server. I have the client and server exchange IP address and port number, so that a TCP/IP connection can be established after completion of the discovery. This way the packet size is kept small. I see that this could be done in one of two ways using UDP:
Each client sends out its own multicast message in search of the server, which the server then responds to. The client can repeat sending this multicast message in regular intervals (in the case that the server is down) until the server responds.
The server sends out a multicast message beacon at regular intervals. The clients subscribe to the multicast group and in this way receives the server's multicast message and complete the discovery.
In 1. if there are many clients then initially there would be many multicast messages transmitted (one from each client). Only the server would subscribe and receive the multicast messages from the clients. Once the server has responded to the client, the client ceases to send out the multicast message. Once all clients have completed their discovery of the server no further multicast messages are transmitted on the network. If however, the server is down, then each client would be sending out a multicast message beacon in intervals until the server is back up and can respond.
In 2. only the server would submit a multicast message beacon in regular intervals. This message would end up getting routed to all clients that are subscribed to the multicast group. Once the clients receive the packet the client's UDP listening socket gets closed and they are no longer subscribed to the multicast group. However, the server must continue to send the multicast beacon, so that new clients can discover it. It would continue sending out the beacon at regular intervals regardless of whether any clients are out their requiring discovery or not.
So, I see pros and cons either way. It seems to me that #1 would result in heavier load initially, but this load eventually reduces down to zero. In #2 the server would continue sending out a beacon forever.
UDP and multicast is a fairly new topic to me, so I am interested in finding out which would be the preferred approach and which would result in less network load.
I've used option #2 in the past several times. It works well for simple network topologies. We did see some throughput problems when UDP datagrams exceeded the Ethernet MTU resulting in a large amount of fragmentation. The largest problem that we have seen is that multicast discovery breaks down in larger topologies since many routers are configured to block multicast traffic.
The issue that Greg alluded to is rather important to consider when you are designing your protocol suite. As soon as you move beyond simple network topologies, you will have to find solutions for address translation, IP spoofing, and a whole host of other issues related to the handoff from your discovery layer to your communications layer. Most of them have to do specifically with how your server identifies itself and ensuring that the identification is something that a client can make use of.
If I could do it over again (how many times have we uttered this phrase), I would look for standards-based discovery mechanisms that fit the bill and start solving the other protocol suite problems. The last thing that you really want to do is come up with a really good discovery scheme that breaks the week after you deploy it because of some unforeseen network topology. Google service discovery for a starting list. I personally tend towards DNS-SD but there are a lot of other options available.
I would recommend method #2, as it is likely (depending on the application) that you will have far more clients than you will servers. By having the server send out a beacon, you only send one packet every so often, rather than one packet for each client.
The other benefit of this method, is that it makes it easier for the clients to determine when a new server becomes available, or when an existing server leaves the network, as they don't have to maintain a connection to each server, or keep polling each server, to find out.
Both are equally viable methods.
The argument for method #1 would be that in normal principle, clients initiate requests, and servers listen and respond to them.
The argument for method #2 would be that the point of multicast is so that one host can send a packet and it can be received by many clients (one-to-many), so it's meant to be the reverse of #1.
OK, as I think about this I'm actually drawn to #2, server-initiated beacon. The problem with #1 is that let's say clients broadcast beacons, and they hook up with the server, but the server either goes offline or changes its IP address.
When the server is back up and sends its first beacon, all the clients will be notified at the same time to reconnect, and your entire system is back up immediately. With #1, all of the clients would have to individually realize that the server is gone, and they would all start multicasting at the same time, until connected back with the server. If you had 1000 clients and 1 server your network load would literally be 1000x greater than method #2.
I know these messages are most likely small, and 1000 packets at a time is nothing to a UDP network, but just from a design standpoint #2 feels better.
Edit: I feel like I'm developing a split-personality disorder here, but just thought of a powerful point of why #1 would be an advantage... If you ever wanted to implement some sort of natural load balancing or scaling with multiple servers, design #1 works well for this. That way the first "available" server can respond to the client's beacon and connect to it, as opposed to #2 where all the clients jump to the beaconing server.
Your option #2 has a big limitation in that it assumes that the server can communicate more or less directly with every possible client. Depending on the exact network architecture of your operational system, this may not be the case. For example, you may be depending that all routers and VPN software and WANs and NATs and whatever other things people connect networks together with, can actually handle the multicast beacon packets.
With #1, you are assuming that the clients can send a UDP packet to the server. This is an entirely reasonable expectation, especially considering the very next thing the client will do is make a TCP connection to the same server.
If the server goes down and the client wants to find out when it's back up, be sure to use exponential backoff otherwise you will take the network down with a packet storm someday!