Best way to use type classes with list parametrized with some base class, abstract class or trait - scala

I think it would be easier to describe a problem with concrete example. Suppose I have have Fruit class hierarchy and Show type class:
trait Fruit
case class Apple extends Fruit
case class Orange extends Fruit
trait Show[T] {
def show(target: T): String
}
object Show {
implicit object AppleShow extends Show[Apple] {
def show(apple: Apple) = "Standard apple"
}
implicit object OrangeShow extends Show[Orange] {
def show(orange: Orange) = "Standard orange"
}
}
def getAsString[T](target: T)(implicit s: Show[T]) = s show target
I also have list of fruits that I would like to show to the user using Show (this is my main goal in this question):
val basket = List[Fruit](Apple(), Orange())
def printList[T](list: List[T])(implicit s: Show[T]) =
list foreach (f => println(s show f))
printList(basket)
This will not compile because List is parametrized with Fruit and I have not defined any Show[Fruit]. What is the best way to achieve my goal using type classes?
I tried to find solution for this problem, but unfortunately have not found any nice one yet. It's not enough to know s in printList function - somehow it needs to know Show[T] for each element of the list. This means, that in order to be able to make this, we need some run-time mechanism in addition to the compile-time one. This gave me an idea of some kind of run-time dictionary, that knows, how to find correspondent Show[T] at run-time.
Implementation of implicit Show[Fruit]can serve as such dictionary:
implicit object FruitShow extends Show[Fruit] {
def show(f: Fruit) = f match {
case a: Apple => getAsString(a)
case o: Orange => getAsString(o)
}
}
And actually very similar approach can be found in haskell. As an example, we can look at Eq implementation for Maybe:
instance (Eq m) => Eq (Maybe m) where
Just x == Just y = x == y
Nothing == Nothing = True
_ == _ = False
The big problem with this solution, is that if I will add new subclass of Fruit like this:
case class Banana extends Fruit
object Banana {
implicit object BananaShow extends Show[Banana] {
def show(banana: Banana) = "New banana"
}
}
and will try to print my basket:
val basket = List[Fruit](Apple(), Orange(), Banana())
printList(basket)
then scala.MatchError would be thrown because my dictionary does not know anything about bananas yet. Of course, I can provide updated dictionary in some context that knows about bananas:
implicit object NewFruitShow extends Show[Fruit] {
def show(f: Fruit) = f match {
case b: Banana => getAsString(b)
case otherFruit => Show.FruitShow.show(otherFruit)
}
}
But this solution is far from perfect. Just imagine that some other library provides another fruit with it's own version of dictionary. It will just conflict with NewFruitShow if I try to use them together.
Maybe I'm missing something obvious?
Update
As #Eric noticed, there is one more solution described here: forall in Scala . It's really looks very interesting. But I see one problem with this solution.
If I use ShowBox, then it will remember concrete type class during it's creation time. So I generally building list with objects and correspondent type classes (so dictionary in present in the list). From the other hand, scala has very nice feature: I can drop new implicits in the current scope and they will override defaults. So I can define alternative string representation for the classes like:
object CompactShow {
implicit object AppleCompactShow extends Show[Apple] {
def show(apple: Apple) = "SA"
}
implicit object OrangeCompactShow extends Show[Orange] {
def show(orange: Orange) = "SO"
}
}
and then just import it in current scope with import CompactShow._. In this case AppleCompactShow and OrangeCompactShow object would be implicitly used instead of defaults defined in the companion object of Show. And as you can guess, list creation and printing happens in different places. If I will use ShowBox, than most probably I will capture default instances of type class. I would like to capture them at the last possible moment - the moment when I call printList, because I even don't know, whether my List[Fruit] will ever be shown or how it would be shown, in the code that creates it.

The most obvious answer is to use a sealed trait Fruit and a Show[Fruit]. That way your pattern matches will complain at compile time when the match is not exhaustive. Of course, adding a new kind of Fruit in an external library will not be possible, but this is inherent in the nature of things. This is the "expression problem".
You could also stick the Show instance on the Fruit trait:
trait Fruit { self =>
def show: Show[self.type]
}
case class Apple() extends Fruit { self =>
def show: Show[self.type] = showA
}
Or, you know, stop subtyping and use type classes instead.

Related

Chaining path-dependent types and instantiating them when they having different parameter lists in Scala

I'm experimenting with writing more statically type-safe code by implementing a simple card game. In this game, there are several unique cards and each card has a card-specific effect which may require additional parameters (e.g., a target for the effect). A player holds two cards and on their turn chooses to play one of them, causing that card's effect to take place.
Note: most of the details in this post are from trying it out in the REPL. I have a less statically type-safe implementation written but I want to make sure that what I want is feasible before diving completely into it.
Here are some relevant definitions:
trait CardEffectParams
case class OneTarget(player: Player) extends CardEffectParams
case class TwoTargets(player1: Player, player2: Player) extends CardEffectParams
// ...
trait Card {
// the parameters to use are specific to the card
type Params <: CardEffectParams
}
trait Hand {
case class CardInHand(card: Card) { /* with ctor not accessible from outside */ }
// a player can hold two cards
val card1: CardInHand
val card2: CardInHand
}
I want to delegate the choosing of which card to play to some strategy so I can see how different strategies compare. This is where I'm stuck: I want to limit the cards you can return to the ones in the Hand object passed in the parameters, which I can do by typing it as hand.CardInHand:
trait Strategy {
def choose(hand: Hand, gameState: GameState): hand.CardsInHand
}
But I also want to pass extra parameters: for example, one card might allow me to target just one player (e.g., skip their turn), but another might let me target two (e.g., swap their cards). These are modelled by CardEffectParams. So I want to return both hand.CardsInHand and a cardInHand.card.Params where cardInHand is the instance I'm returning, something like this:
/* NOT valid scala */
trait Strategy {
def choose(hand: Hand, gameState: GameState): (c: hand.CardsInHand, c.card.Params)
}
So the first question is, can this be done? How would you represent this relationship?
I'm also stuck on how to instantiate the CardEffectParams subclasses, since each one may have different parameter lists. My first thought is to do a pattern match, but this fails because the type of the match block is the common ancestor of all possible results:
case object CardA extends Card {
type Params = OneTarget
}
case object CardB extends Card {
type Params = TwoTargets
}
object RandomStrategy extends Strategy {
def choose(hand: Hand, gameState: GameState) = {
val card: Card = /* randomly pick card1 or card2 */
/* the type of the match block is CardEffectParams, not card.Params */
val param: card.Params = card match {
case CardA => OneTarget(...)
case CardB => TwoTargets(...)
}
}
}
My current idea is to define a factory method within each card object that takes an hlist of arguments from which it produces the correct type:
trait Card {
type Params <: CardEffectParams
type HListTypeOfParams = /* insert shapeless magic */
def create[L <: HListTypeOfParams](l: L): Params
}
from which I can then do the following?
// no idea if this works or not
val card: Card = ...
val params: card.Params = card match {
case c: CardA => c.create(1 :: HNil)
case c: CardB => c.create(1 :: 2 :: HNil)
}
But I feel like I've gone too far down the rabbit hole. Is what I want to achieve possible? Is it necessary? Do I need to dive so deep into typing to ensure static type safety or am I missing something really elementary?
For the first question, I would replace your tuple with a type that represents the relationship
trait CardAndParams {
type C <: Card
val card: C
val params: C#Params
}
def choose[R <: CardAndParams](hand: Hand, gameState: GameState)(
implicit helper: Helper {type Out = R}): R
You will need to use implicits like my Helper example to drive the actual strategy implementations and ensure the correct R is inferred. This is also the more usual way to do type-level computation:
sealed trait RandomStrategyHelper[C <: Card] {
def params(): C#Params
}
object RandomStrategyHelper {
implicit def forCardA = new RandomStrategyHelper[CardA] {
def params() = 1 :: HNil
}
implicit def forCardB = new RandomStrategyHelper[CardB] {
def params() = 1 :: 2 :: HNil
}
}
def randomParams[C <: Card](card: C)(implicit rsh: RandomStrategyHelper[C]) =
rsh.params()
But I guess you need a way to move from your randomly-generated card to a strongly typed one, and for that the pattern match seems appropriate, since it would be difficult to represent a random card at type level.
In general this kind of type-level programming is possible but hard in Scala - the language wasn't really designed for it. If you want to push this as far as it will go you may be better off using something like Idris.

Custom Scala enum, most elegant version searched

For a project of mine I have implemented a Enum based upon
trait Enum[A] {
trait Value { self: A =>
_values :+= this
}
private var _values = List.empty[A]
def values = _values
}
sealed trait Currency extends Currency.Value
object Currency extends Enum[Currency] {
case object EUR extends Currency
case object GBP extends Currency
}
from Case objects vs Enumerations in Scala. I worked quite nice, till I run into the following problem. Case objects seem to be lazy and if I use Currency.value I might actually get an empty List. It would have been possible to make a call against all Enum Values on startup so that the value list would be populated, but that would be kind of defeating the point.
So I ventured into the dark and unknown places of scala reflection and came up with this solution, based upon the following SO answers. Can I get a compile-time list of all of the case objects which derive from a sealed parent in Scala?
and How can I get the actual object referred to by Scala 2.10 reflection?
import scala.reflect.runtime.universe._
abstract class Enum[A: TypeTag] {
trait Value
private def sealedDescendants: Option[Set[Symbol]] = {
val symbol = typeOf[A].typeSymbol
val internal = symbol.asInstanceOf[scala.reflect.internal.Symbols#Symbol]
if (internal.isSealed)
Some(internal.sealedDescendants.map(_.asInstanceOf[Symbol]) - symbol)
else None
}
def values = (sealedDescendants getOrElse Set.empty).map(
symbol => symbol.owner.typeSignature.member(symbol.name.toTermName)).map(
module => reflect.runtime.currentMirror.reflectModule(module.asModule).instance).map(
obj => obj.asInstanceOf[A]
)
}
The amazing part of this is that it actually works, but it is ugly as hell and I would be interested if it would be possible to make this simpler and more elegant and to get rid of the asInstanceOf calls.
Here is a simple macro based implementation:
import scala.language.experimental.macros
import scala.reflect.macros.blackbox
abstract class Enum[E] {
def values: Seq[E] = macro Enum.caseObjectsSeqImpl[E]
}
object Enum {
def caseObjectsSeqImpl[A: c.WeakTypeTag](c: blackbox.Context) = {
import c.universe._
val typeSymbol = weakTypeOf[A].typeSymbol.asClass
require(typeSymbol.isSealed)
val subclasses = typeSymbol.knownDirectSubclasses
.filter(_.asClass.isCaseClass)
.map(s => Ident(s.companion))
.toList
val seqTSymbol = weakTypeOf[Seq[A]].typeSymbol.companion
c.Expr(Apply(Ident(seqTSymbol), subclasses))
}
}
With this you could then write:
sealed trait Currency
object Currency extends Enum[Currency] {
case object USD extends Currency
case object EUR extends Currency
}
so then
Currency.values == Seq(Currency.USD, Currency.EUR)
Since it's a macro, the Seq(Currency.USD, Currency.EUR) is generated at compile time, rather than runtime. Note, though, that since it's a macro, the definition of the class Enum must be in a separate project from where it is used (i.e. the concrete subclasses of Enum like Currency). This is a relatively simple implementation; you could do more complicated things like traverse multilevel class hierarchies to find more case objects at the cost of greater complexity, but hopefully this will get you started.
A late answer, but anyways...
As wallnuss said, knownDirectSubclasses is unreliable as of writing and has been for quite some time.
I created a small lib called Enumeratum (https://github.com/lloydmeta/enumeratum) that allows you to use case objects as enums in a similar way, but doesn't use knownDirectSubclasses and instead looks at the body that encloses the method call to find subclasses. It has proved to be reliable thus far.
The article "“You don’t need a macro” Except when you do" by Max Afonov
maxaf describes a nice way to use macro for defining enums.
The end-result of that implementation is visible in github.com/maxaf/numerato
Simply create a plain class, annotate it with #enum, and use the familiar val ... = Value declaration to define a few enum values.
The #enum annotation invokes a macro, which will:
Replace your Status class with a sealed Status class suitable for acting as a base type for enum values. Specifically, it'll grow a (val index: Int, val name: String) constructor. These parameters will be supplied by the macro, so you don't have to worry about it.
Generate a Status companion object, which will contain most of the pieces that now make Status an enumeration. This includes a values: List[Status], plus lookup methods.
Give the above Status enum, here's what the generated code looks like:
scala> #enum(debug = true) class Status {
| val Enabled, Disabled = Value
| }
{
sealed abstract class Status(val index: Int, val name: String)(implicit sealant: Status.Sealant);
object Status {
#scala.annotation.implicitNotFound(msg = "Enum types annotated with ".+("#enum can not be extended directly. To add another value to the enum, ").+("please adjust your `def ... = Value` declaration.")) sealed abstract protected class Sealant;
implicit protected object Sealant extends Sealant;
case object Enabled extends Status(0, "Enabled") with scala.Product with scala.Serializable;
case object Disabled extends Status(1, "Disabled") with scala.Product with scala.Serializable;
val values: List[Status] = List(Enabled, Disabled);
val fromIndex: _root_.scala.Function1[Int, Status] = Map(Enabled.index.->(Enabled), Disabled.index.->(Disabled));
val fromName: _root_.scala.Function1[String, Status] = Map(Enabled.name.->(Enabled), Disabled.name.->(Disabled));
def switch[A](pf: PartialFunction[Status, A]): _root_.scala.Function1[Status, A] = macro numerato.SwitchMacros.switch_impl[Status, A]
};
()
}
defined class Status
defined object Status

Scala factory pattern returns unusable abstract type

Please let me know how to make the following bit of code work as intended. The problem is that the Scala compiler doesn't understand that my factory is returning a concrete class, so my object can't be used later. Can TypeTags or type parameters help? Or do I need to refactor the code some other way? I'm (obviously) new to Scala.
trait Animal
trait DomesticatedAnimal extends Animal
trait Pet extends DomesticatedAnimal {var name: String = _}
class Wolf extends Animal
class Cow extends DomesticatedAnimal
class Dog extends Pet
object Animal {
def apply(aType: String) = {
aType match {
case "wolf" => new Wolf
case "cow" => new Cow
case "dog" => new Dog
}
}
}
def name(a: Pet, name: String) {
a.name = name
println(a +"'s name is: " + a.name)
}
val d = Animal("dog")
name(d, "fred")
The last line of code fails because the compiler thinks d is an Animal, not a Dog.
You should create companion objects with apply method for each subclass of Animal instaed of Animal trait. Also, it is considered a bad practice to use mutable field like you did with name.
You can do that, without changing anything else :
val d = Animal("dog").asInstanceOf[Dog] //> d : Test.Dog = Test$$anonfun$main$1$Dog$1#1030dda
name(d, "fred") //> Test$$anonfun$main$1$Dog$1#1030dda's name is: fred
But, i don't think it's a very good idea...
I don't want to sound rude but the compiler is right about assuming that d is an Animal because that's what the Animal.apply method returns.
As already pointed out you could force the type of d with an explicit cast but it simply wouldn't be type safe. It would be leveraging your knowledge about the method implementation as a programmer, which will eventually become a source of bugs as your codebase grows and you possibly change previous code in unexpected ways.
If you need to call a Pet method then you would better use a factory method that creates Pet objects, or at least check the object type before doing the type cast, using
if (d.isInstanceOf[Pet]) name(d.asInstanceOf[Pet], "Fred")
Or better still, using pattern matching
val d = Animal("dog")
d match {
case p: Pet => name(p, "fred")
case _ =>
}

Implementing '.clone' in Scala

I'm trying to figure out how to .clone my own objects, in Scala.
This is for a simulation so mutable state is a must, and from that arises the whole need for cloning. I'll clone a whole state structure before moving the simulation time ahead.
This is my current try:
abstract trait Cloneable[A] {
// Seems we cannot declare the prototype of a copy constructor
//protected def this(o: A) // to be defined by the class itself
def myClone= new A(this)
}
class S(var x: String) extends Cloneable[S] {
def this(o:S)= this(o.x) // for 'Cloneable'
def toString= x
}
object TestX {
val s1= new S("say, aaa")
println( s1.myClone )
}
a. Why does the above not compile. Gives:
error: class type required but A found
def myClone= new A(this)
^
b. Is there a way to declare the copy constructor (def this(o:A)) in the trait, so that classes using the trait would be shown to need to provide one.
c. Is there any benefit from saying abstract trait?
Finally, is there a way better, standard solution for all this?
I've looked into Java cloning. Does not seem to be for this. Also Scala copy is not - it's only for case classes and they shouldn't have mutable state.
Thanks for help and any opinions.
Traits can't define constructors (and I don't think abstract has any effect on a trait).
Is there any reason it needs to use a copy constructor rather than just implementing a clone method? It might be possible to get out of having to declare the [A] type on the class, but I've at least declared a self type so the compiler will make sure that the type matches the class.
trait DeepCloneable[A] { self: A =>
def deepClone: A
}
class Egg(size: Int) extends DeepCloneable[Egg] {
def deepClone = new Egg(size)
}
object Main extends App {
val e = new Egg(3)
println(e)
println(e.deepClone)
}
http://ideone.com/CS9HTW
It would suggest a typeclass based approach. With this it is possible to also let existing classes be cloneable:
class Foo(var x: Int)
trait Copyable[A] {
def copy(a: A): A
}
implicit object FooCloneable extends Copyable[Foo] {
def copy(foo: Foo) = new Foo(foo.x)
}
implicit def any2Copyable[A: Copyable](a: A) = new {
def copy = implicitly[Copyable[A]].copy(a)
}
scala> val x = new Foo(2)
x: Foo = Foo#8d86328
scala> val y = x.copy
y: Foo = Foo#245e7588
scala> x eq y
res2: Boolean = false
a. When you define a type parameter like the A it gets erased after the compilation phase.
This means that the compiler uses type parameters to check that you use the correct types, but the resulting bytecode retains no information of A.
This also implies that you cannot use A as a real class in code but only as a "type reference", because at runtime this information is lost.
b & c. traits cannot define constructor parameters or auxiliary constructors by definition, they're also abstract by definition.
What you can do is define a trait body that gets called upon instantiation of the concrete implementation
One alternative solution is to define a Cloneable typeclass. For more on this you can find lots of blogs on the subject, but I have no suggestion for a specific one.
scalaz has a huge part built using this pattern, maybe you can find inspiration there: you can look at Order, Equal or Show to get the gist of it.

case class copy 'method' with superclass

I want to do something like this:
sealed abstract class Base(val myparam:String)
case class Foo(override val myparam:String) extends Base(myparam)
case class Bar(override val myparam:String) extends Base(myparam)
def getIt( a:Base ) = a.copy(myparam="changed")
I can't, because in the context of getIt, I haven't told the compiler that every Base has a 'copy' method, but copy isn't really a method either so I don't think there's a trait or abstract method I can put in Base to make this work properly. Or, is there?
If I try to define Base as abstract class Base{ def copy(myparam:String):Base }, then case class Foo(myparam:String) extends Base results in class Foo needs to be abstract, since method copy in class Base of type (myparam: String)Base is not defined
Is there some other way to tell the compiler that all Base classes will be case classes in their implementation? Some trait that means "has the properties of a case class"?
I could make Base be a case class, but then I get compiler warnings saying that inheritance from case classes is deprecated?
I know I can also:
def getIt(f:Base)={
(f.getClass.getConstructors.head).newInstance("yeah").asInstanceOf[Base]
}
but... that seems very ugly.
Thoughts? Is my whole approach just "wrong" ?
UPDATE I changed the base class to contain the attribute, and made the case classes use the "override" keyword. This better reflects the actual problem and makes the problem more realistic in consideration of Edmondo1984's response.
This is old answer, before the question was changed.
Strongly typed programming languages prevent what you are trying to do. Let's see why.
The idea of a method with the following signature:
def getIt( a:Base ) : Unit
Is that the body of the method will be able to access a properties visible through Base class or interface, i.e. the properties and methods defined only on the Base class/interface or its parents. During code execution, each specific instance passed to the getIt method might have a different subclass but the compile type of a will always be Base
One can reason in this way:
Ok I have a class Base, I inherit it in two case classes and I add a
property with the same name, and then I try to access the property on
the instance of Base.
A simple example shows why this is unsafe:
sealed abstract class Base
case class Foo(myparam:String) extends Base
case class Bar(myparam:String) extends Base
case class Evil(myEvilParam:String) extends Base
def getIt( a:Base ) = a.copy(myparam="changed")
In the following case, if the compiler didn't throw an error at compile time, it means the code would try to access a property that does not exist at runtime. This is not possible in strictly typed programming languages: you have traded restrictions on the code you can write for a much stronger verification of your code by the compiler, knowing that this reduces dramatically the number of bugs your code can contain
This is the new answer. It is a little long because few points are needed before getting to the conclusion
Unluckily, you can't rely on the mechanism of case classes copy to implement what you propose. The way the copy method works is simply a copy constructor which you can implement yourself in a non-case class. Let's create a case class and disassemble it in the REPL:
scala> case class MyClass(name:String, surname:String, myJob:String)
defined class MyClass
scala> :javap MyClass
Compiled from "<console>"
public class MyClass extends java.lang.Object implements scala.ScalaObject,scala.Product,scala.Serializable{
public scala.collection.Iterator productIterator();
public scala.collection.Iterator productElements();
public java.lang.String name();
public java.lang.String surname();
public java.lang.String myJob();
public MyClass copy(java.lang.String, java.lang.String, java.lang.String);
public java.lang.String copy$default$3();
public java.lang.String copy$default$2();
public java.lang.String copy$default$1();
public int hashCode();
public java.lang.String toString();
public boolean equals(java.lang.Object);
public java.lang.String productPrefix();
public int productArity();
public java.lang.Object productElement(int);
public boolean canEqual(java.lang.Object);
public MyClass(java.lang.String, java.lang.String, java.lang.String);
}
In Scala, the copy method takes three parameter and can eventually use the one from the current instance for the one you haven't specified ( the Scala language provides among its features default values for parameters in method calls)
Let's go down in our analysis and take again the code as updated:
sealed abstract class Base(val myparam:String)
case class Foo(override val myparam:String) extends Base(myparam)
case class Bar(override val myparam:String) extends Base(myparam)
def getIt( a:Base ) = a.copy(myparam="changed")
Now in order to make this compile, we would need to use in the signature of getIt(a:MyType) a MyType that respect the following contract:
Anything that has a parameter myparam and maybe other parameters which
have default value
All these methods would be suitable:
def copy(myParam:String) = null
def copy(myParam:String, myParam2:String="hello") = null
def copy(myParam:String,myParam2:Option[Option[Option[Double]]]=None) = null
There is no way to express this contract in Scala, however there are advanced techniques that can be helpful.
The first observation that we can do is that there is a strict relation between case classes and tuples in Scala. In fact case classes are somehow tuples with additional behaviour and named properties.
The second observation is that, since the number of properties of your classes hierarchy is not guaranteed to be the same, the copy method signature is not guaranteed to be the same.
In practice, supposing AnyTuple[Int] describes any Tuple of any size where the first value is of type Int, we are looking to do something like that:
def copyTupleChangingFirstElement(myParam:AnyTuple[Int], newValue:Int) = myParam.copy(_1=newValue)
This would not be to difficult if all the elements were Int. A tuple with all element of the same type is a List, and we know how to replace the first element of a List. We would need to convert any TupleX to List, replace the first element, and convert the List back to TupleX. Yes we will need to write all the converters for all the values that X might assume. Annoying but not difficult.
In our case though, not all the elements are Int. We want to treat Tuple where the elements are of different type as if they were all the same if the first element is an Int. This is called
"Abstracting over arity"
i.e. treating tuples of different size in a generic way, independently of their size. To do it, we need to convert them into a special list which supports heterogenous types, named HList
Conclusion
Case classes inheritance is deprecated for very good reason, as you can find out from multiple posts in the mailing list: http://www.scala-lang.org/node/3289
You have two strategies to deal with your problem:
If you have a limited number of fields you require to change, use an approach such as the one suggested by #Ron, which is having a copy method. If you want to do it without losing type information, I would go for generifying the base class
sealed abstract class Base[T](val param:String){
def copy(param:String):T
}
class Foo(param:String) extends Base[Foo](param){
def copy(param: String) = new Foo(param)
}
def getIt[T](a:Base[T]) : T = a.copy("hello")
scala> new Foo("Pippo")
res0: Foo = Foo#4ab8fba5
scala> getIt(res0)
res1: Foo = Foo#5b927504
scala> res1.param
res2: String = hello
If you really want to abstract over arity, a solution is to use a library developed by Miles Sabin called Shapeless. There is a question here which has been asked after a discussion : Are HLists nothing more than a convoluted way of writing tuples? but I tell you this is going to give you some headache
If the two case classes would diverge over time so that they have different fields, then the shared copy approach would cease to work.
It is better to define an abstract def withMyParam(newParam: X): Base. Even better, you can introduce an abstract type to retain the case class type upon return:
scala> trait T {
| type Sub <: T
| def myParam: String
| def withMyParam(newParam: String): Sub
| }
defined trait T
scala> case class Foo(myParam: String) extends T {
| type Sub = Foo
| override def withMyParam(newParam: String) = this.copy(myParam = newParam)
| }
defined class Foo
scala>
scala> case class Bar(myParam: String) extends T {
| type Sub = Bar
| override def withMyParam(newParam: String) = this.copy(myParam = newParam)
| }
defined class Bar
scala> Bar("hello").withMyParam("dolly")
res0: Bar = Bar(dolly)
TL;DR: I managed to declare the copy method on Base while still letting the compiler auto generate its implementations in the derived case classes. This involves a little trick (and actually I'd myself just redesign the type hierarchy) but at least it goes to show that you can indeed make it work without writing boiler plate code in any of the derived case classes.
First, and as already mentioned by ron and Edmondo1984, you'll get into troubles if your case classes have different fields.
I'll strictly stick to your example though, and assume that all your case classes have the same fields (looking at your github link, this seems to be the case of your actual code too).
Given that all your case classes have the same fields, the auto-generated copy methods will have the same signature which is a good start. It seems reasonable then to just add the common definition in Base, as you did:
abstract class Base{ def copy(myparam: String):Base }
The problem is now that scala won't generate the copy methods, because there is already one in the base class.
It turns out that there is another way to statically ensure that Base has the right copy method, and it is through structural typing and self-type annotation:
type Copyable = { def copy(myParam: String): Base }
sealed abstract class Base(val myParam: String) { this : Copyable => }
And unlike in our earlier attempt, this will not prevent scala to auto-generate the copy methods.
There is one last problem: the self-type annotation makes sure that sub-classes of Base have a copy method, but it does not make it publicly availabe on Base:
val foo: Base = Foo("hello")
foo.copy()
scala> error: value copy is not a member of Base
To work around this we can add an implicit conversion from Base to Copyable. A simple cast will do, as a Base is guaranteed to be a Copyable:
implicit def toCopyable( base: Base ): Base with Copyable = base.asInstanceOf[Base with Copyable]
Wrapping up, this gives us:
object Base {
type Copyable = { def copy(myParam: String): Base }
implicit def toCopyable( base: Base ): Base with Copyable = base.asInstanceOf[Base with Copyable]
}
sealed abstract class Base(val myParam: String) { this : Base. Copyable => }
case class Foo(override val myParam: String) extends Base( myParam )
case class Bar(override val myParam: String) extends Base( myParam )
def getIt( a:Base ) = a.copy(myParam="changed")
Bonus effect: if we try to define a case class with a different signature, we get a compile error:
case class Baz(override val myParam: String, truc: Int) extends Base( myParam )
scala> error: illegal inheritance; self-type Baz does not conform to Base's selftype Base with Base.Copyable
To finish, one warning: you should probably just revise your design to avoid having to resort to the above trick.
In your case, ron's suggestion to use a single case class with an additional etype field seems more than reasonable.
I think this is what extension methods are for. Take your pick of implementation strategies for the copy method itself.
I like here that the problem is solved in one place.
It's interesting to ask why there is no trait for caseness: it wouldn't say much about how to invoke copy, except that it can always be invoked without args, copy().
sealed trait Base { def p1: String }
case class Foo(val p1: String) extends Base
case class Bar(val p1: String, p2: String) extends Base
case class Rab(val p2: String, p1: String) extends Base
case class Baz(val p1: String)(val p3: String = p1.reverse) extends Base
object CopyCase extends App {
implicit class Copy(val b: Base) extends AnyVal {
def copy(p1: String): Base = b match {
case foo: Foo => foo.copy(p1 = p1)
case bar: Bar => bar.copy(p1 = p1)
case rab: Rab => rab.copy(p1 = p1)
case baz: Baz => baz.copy(p1 = p1)(p1.reverse)
}
//def copy(p1: String): Base = reflect invoke
//def copy(p1: String): Base = macro xcopy
}
val f = Foo("param1")
val g = f.copy(p1="param2") // normal
val h: Base = Bar("A", "B")
val j = h.copy("basic") // enhanced
println(List(f,g,h,j) mkString ", ")
val bs = List(Foo("param1"), Bar("A","B"), Rab("A","B"), Baz("param3")())
val vs = bs map (b => b copy (p1 = b.p1 * 2))
println(vs)
}
Just for fun, reflective copy:
// finger exercise in the api
def copy(p1: String): Base = {
import scala.reflect.runtime.{ currentMirror => cm }
import scala.reflect.runtime.universe._
val im = cm.reflect(b)
val ts = im.symbol.typeSignature
val copySym = ts.member(newTermName("copy")).asMethod
def element(p: Symbol): Any = (im reflectMethod ts.member(p.name).asMethod)()
val args = for (ps <- copySym.params; p <- ps) yield {
if (p.name.toString == "p1") p1 else element(p)
}
(im reflectMethod copySym)(args: _*).asInstanceOf[Base]
}
This works fine for me:
sealed abstract class Base { def copy(myparam: String): Base }
case class Foo(myparam:String) extends Base {
override def copy(x: String = myparam) = Foo(x)
}
def copyBase(x: Base) = x.copy("changed")
copyBase(Foo("abc")) //Foo(changed)
There is a very comprehensive explanation of how to do this using shapeless at http://www.cakesolutions.net/teamblogs/copying-sealed-trait-instances-a-journey-through-generic-programming-and-shapeless ; in case the link breaks, the approach uses the copySyntax utilities from shapeless, which should be sufficient to find more details.
Its an old problem, with an old solution,
https://code.google.com/p/scala-scales/wiki/VirtualConstructorPreSIP
made before the case class copy method existed.
So in reference to this problem each case class MUST be a leaf node anyway, so define the copy and a MyType / thisType plus the newThis function and you are set, each case class fixes the type. If you want to widen the tree/newThis function and use default parameters you'll have to change the name.
as an aside - I've been waiting for compiler plugin magic to improve before implementing this but type macros may be the magic juice. Search in the lists for Kevin's AutoProxy for a more detailed explanation of why my code never went anywhere