VB.NET to C#: Using Data-Binding methods on object - c#-3.0

In VB.NET I created 2 shorthand functions for data binding gridviews/dropdownlists/etc from any datasource (such as a DataReader or IReader or collection, etc):
Public Shared Sub BindObject(ByVal objDataSource As Object, ByVal objItem As Object)
objItem.DataSource = objDataSource
objItem.DataBind()
End Sub
Public Shared Sub BindObject(ByVal objDataSource As Object, ByVal objItem As Object, ByVal sTextField As String, ByVal sValueField As String)
objItem.DataSource = objDataSource
If sTextField <> "" Then objItem.DataTextField = sTextField
If sValueField <> "" Then objItem.DataValueField = sValueField
objItem.DataBind()
End Sub
I converted this to C# as such:
public static void BindObject(object objDataSource, object objItem)
{
objItem.DataSource = objDataSource;
objItem.DataBind();
}
public static void BindObject(object objDataSource, object objItem, string sTextField, string sValueField)
{
objItem.DataSource = objDataSource;
if (!string.IsNullOrEmpty(sTextField))
objItem.DataTextField = sTextField;
if (!string.IsNullOrEmpty(sValueField))
objItem.DataValueField = sValueField;
objItem.DataBind();
}
Yet this obviously doesn't work as the Data-Binding methods aren't accessible to objItem, unless I explicity cast it to a type such as "ListBox" or "Gridview", etc. Similarly I want to retain the flexibility that objDataSource can be either an IReader, iCollection, etc.
Is it possible to replicate the VB.NET approach in C# using anonymous methods or something similar?
Thanks.

You could use the "var" anonymous type or enter a case statement to see what type your incoming object is.
-edit-
You are correct, the var does not seem workable here. Please try this solution instead:
public void BindObject(object objDataSource, object objItem)
{
(objItem as BaseDataBoundControl).DataSource = objDataSource;
(objItem as BaseDataBoundControl).DataBind();
}
Regards,
Paul

You've got Option Strict turned off in your VB code. Tsk tsk — that's not really the best choice.
To get a similar effect in C#, you can do this:
public static void BindObject(object objDataSource, dynamic objItem)
{
objItem.DataSource = objDataSource;
objItem.DataBind();
}
public static void BindObject(object objDataSource, dynamic objItem, string sTextField, string sValueField)
{
objItem.DataSource = objDataSource;
if (!string.IsNullOrEmpty(sTextField))
objItem.DataTextField = sTextField;
if (!string.IsNullOrEmpty(sValueField))
objItem.DataValueField = sValueField;
objItem.DataBind();
}
But again, you should really look into a way to do this that preserves strong compile-time type checking.

Related

Can I make my own getters and setters and should I?

Should I make my own getters and setters in Swift? Im confused by the built in getters ad setters...is this even needed?
//properties for the resident
private var name: String!
var apartmentNumber: String!
var email : String!
var phoneNumber : String!
public func getName()->String{
return self.name
}
public func setName(name : String){
self.name = name
}
}
I've written an article for exactly this. I'll paste it here.
Stop writing getters and setters in Swift
I see this time and time again, and it's about time I write an article in one place to consolidate all my thoughts. If you find yourself writing code that looks like this, listen up:
public class C {
private var _i: Int = 0
public var i: Int {
get {
return self._i
}
set {
self._i = newValue
}
}
}
This pattern* is completely pointless in Swift, and I'll explain why, but firstly we need to take a short detour through Java land. Why Java? Because most of the people I run into who write Swift like this have some sort of Java background, either
because it was taught in their computer sceince courses, or
because they're coming over to iOS development, from Android
What's the point of getters and setters?
Suppose we have the following class in Java:
public class WeatherReport {
public String cityName;
public double temperatureF;
public WeatherReport(String cityName, double temperatureF) {
this.cityName = cityName;
this.temperatureF = temperatureF;
}
}
If you showed this class to any CS prof, they're surely going to bark at you for breaking encapsulation. But what does that really mean? Well, imagine how a class like this would be used. Someone would write some code that looks something like this:
WeatherReport weatherReport = weatherAPI.fetchWeatherReport();
weatherDisplayUI.updateTemperatureF(weatherReport.temperatureF);
Now suppose you wanted to upgrade your class to store data in a more sensible temperature unit (beating the imperial system dead horse, am I funny yet?) like Celcius or Kelvin. What happens when you update your class to look like this:
public class WeatherReport {
public String cityName;
public double temperatureC;
public WeatherReport(String cityName, double temperatureC) {
this.cityName = cityName;
this.temperatureC = temperatureC;
}
}
You've changed the implementation details of your WeatherReport class, but you've also made an API breaking change. Because temperatureF was public, it was part of this class' API. Now that you've removed it, you're going to cause compilation errors in every consumer that depended on the exitense of the temperatureF instance variable.
Even worse, you've changed the semantics of the second double argument of your constructor, which won't cause compilation errors, but behavioural errors at runtime (as people's old Farenheit based values are attemped to be used as if they were celcius values). However, that's not an issue I'll be discussing in this article.
The issue here is that consumers of this class will be strongly coupled to the implementation details of your class. To fix this, you introduce a layer of seperation between your implementation details and your interface. Suppose the Farenheit version of our class was implemented like so:
public class WeatherReport {
private String cityName;
private double temperatureF;
public WeatherReport(String cityName, double temperatureF) {
this.cityName = cityName;
this.temperatureF = temperatureF;
}
public String getCityName() {
return this.cityName;
}
public void setCityName(String cityName) {
this.cityName = cityName;
}
public double getTemperatureF() {
return this.temperatureF;
}
public void setTemperatureF(double temperatureF) {
this.temperatureF = temperatureF;
}
}
The getters and setters are really basic methods that access or update our instance variables. Notice how this time, our instance variables are private, and only our getters and setters are public. A consumer would use this code, as so:
WeatherReport weatherReport = weatherAPI.fetchWeatherReport();
weatherDisplayUI.updateTemperatureF(weatherReport.getTemperatureF());
This time, when we make the upgrade to celcius, we have the freedom to change our instance variables, and tweak our class to keep it backwards compatible:
public class WeatherReport {
private String cityName;
private double temperatureC;
public WeatherReport(String cityName, double getTemperatureC) {
this.cityName = cityName;
this.temperatureC = temperatureC;
}
public String getCityName() {
return this.cityName;
}
public void setCityName(String cityName) {
this.cityName = cityName;
}
// Updated getTemperatureF is no longer a simple getter, but instead a function that derives
// its Farenheit value from the Celcius value that actuallyed stored in an instance variable.
public double getTemperatureF() {
return this.getTemperatureC() * 9.0/5.0 + 32.0;
}
// Updated getTemperatureF is no longer a simple setter, but instead a function
// that updates the celcius value stored in the instance variable by first converting from Farenheit
public void setTemperatureF(double temperatureF) {
this.setTemperatureC((temperatureF - 32.0) * 5.0/9.0);
}
// Mew getter, for the new temperatureC instance variable
public double getTemperatureC() {
return this.temperatureC;
}
// New setter, for the new temperatureC instance variable
public void setTemperatureC(double temperatureC) {
this.temperatureC = temperatureC;
}
}
We've added new getters and setters so that new consumers can deal with temperatures in Celcius. But importantly, we've re-implemented the methods that used to be getters and setters for temperatureF (which no longer exists), to do the appropraite conversions and forward on to the Celcius getters and setters. Because these methods still exist, and behave identically as before, we've successfully made out implementation change (storing F to storing C), without breaking our API. Consumers of this API won't notice a difference.
So why doesn't this translate into Swift?
It does. But simply put, it's already done for you. You see, stored properties in Swift are not instance variables. In fact, Swift does not provide a way for you to create or directly access instance variables.
To understand this, we need to have a fuller understanding of what properties are. There are two types, stored and computed, and neither of them are "instance variables".
Stored properties: Are a combination of a comiler-synthesized instance variable (which you never get to see, hear, touch, taste, or smell), and the getter and setter that you use to interact with them.
Computed proepties: Are just a getter and setter, without any instance variable to act as backing storage. Really, they just behave as functions with type () -> T, and (T) -> Void, but have a pleasant dot notation syntax:
print(weatherReport.temperatureC)
weatherReport.temperatureC = 100
rather than a function calling synax:
print(weatherReport.getTemperatureC())
weatherReport.setTemperatureC(100)
So in fact, when you write:
class C {
var i: Int
}
i is the name of the getter and setter for an instance variable the compiler created for you. Let's call the instance variable $i (which is not an otherwise legal Swift identifier). There is no way to directly access $i. You can only get its value by calling the getter i, or update its value by calling its setter i.
So lets see how the WeatherReport migration problem looks like in Swift. Our initial type would look like this:
public struct WeatherReport {
public let cityName: String
public let temperatureF: Double
}
Consumers would access the temperature with weatherReport.temperatureF. Now, this looks like a direct access of an isntance variable, but remember, that's simply not possible in Swift. Instead, this code calls the compiler-syntehsized getter temperatureF, which is what accesses the instance variable $temperatureF.
Now let's do our upgrade to Celcius. We will first update our stored property:
public struct WeatherReport {
public let cityName: String
public let temperatureC: Double
}
This has broken our API. New consumers can use temperatureC, but old consumers who depended on temperatureF will no longer work. To support them, we simply add in a new computed property, that does the conversions between Celcius and Fahenheit:
public struct WeatherReport {
public let cityName: String
public let temperatureC: Double
public var temperatureF: Double {
get { return temperatureC * 9/5 + 32 }
set { temperatureC = (newValue - 32) * 5/9 }
}
}
Because our WeatherReport type still has a getter called temperatureF, consumers will behave just as before. They can't tell whether a property that they access is a getter for a stored property, or a computed property that derives its value in some other way.
So lets look at the original "bad" code. What's so bad about it?
public class C {
private var _i: Int = 0
public var i: Int {
get {
return self._i
}
set {
self._i = newValue
}
}
}
When you call c.i, the following happens:
You access the getter i.
The getter i accesses self._i, which is yet another getter
The getter _i access the "hidden" instance variable $i
And it's similar for the setter. You have two layers of "getterness". See what that would look like in Java:
public class C {
private int i;
public C(int i) {
this.i = i;
}
public int getI1() {
return this.i;
}
public void setI1(int i) {
this.i = i;
}
public int getI2() {
return this.getI1();
}
public void setI2(int i) {
this.setI1(i);
}
}
It's silly!
But what if I want a private setter?
Rather than writing this:
public class C {
private var _i: Int = 0
public var i: Int {
get {
return self._i
}
}
}
You can use this nifty syntax, to specify a seperate access level for the setter:
public class C {
public private(set) var i: Int = 0
}
Now isn't that clean?
There is no need to create setters and getters for stored properties in Swift and you shouldn't create them either.
You can control the accessibility of getters/setters separately when you declare a property.
public private(set) var name: String // public getter, private setter
If you want to implement some custom logic in your setter, you should use property observer, i.e. didSet/willSet.
var name: String {
didSet {
// This is called every time `name` is set, so you can do your custom logic here
}
}
You will hardly come across the need to create your own getters and setters.
Swift's computed property lets you use getters and setters in a very simple way.
Eg: below defined is a computed property circleArea that returns area of circle depending on radius.
var radius: Float = 10
var circleArea: Float {
get {
return .pi * powf(radius, 2)
}
set {
radius = sqrtf(newValue / .pi)
}
}
While you can observe a stored value and perform some task using property observers:
var radius: Float = 10 {
willSet {
print("before setting the value: \(value)")
}
didSet {
print("after the value is set: \(value)")
}
}
radius += 1
// before setting the value: 10.0
// after the value is set: 11.0
However if you feel like using getter setter, you can define appropriate functions for that. Below defined is an extension on Integer to get and set properties value.
extension Int {
func getValue() -> Int {
return self
}
mutating func setValue(_ val: Int) {
self = val
}
}
var aInt: Int = 29
aInt.getValue()
aInt.setValue(45)
print(aInt)
// aInt = 45

Why is it not possible to access static fields of a class via Type.getClass()?

In Haxe, it is possible to get the class of an object with the following function:
Type.getClass(myObject);
If the object myObject is an instance of the class myClass, which contains a static field, I should be able to access this static field:
class MyClass
{
public static myStaticField:Int = 5;
}
public var myObject = new MyClass();
//expected trace: "5"
trace (Type.getClass(myObject).myStaticfield);
But the result is:
"Class <MyClass> has no field myStaticField."
Any idea why?
You need to use reflection to get such value:
class Test {
#:keep public static var value = 5;
static function main() {
var test = new Test();
var v = Reflect.field(Type.getClass(test), "value");
trace(v);
}
public function new() {}
}
Note that to prevent DCE (dead code elimination) I had to mark the static var with #:keep. Normally DCE is going to suppress that variable because it is never referred directly.
Working example here: http://try.haxe.org/#C1612
Try the Reflect class (Specifically the callMethod or getProperty functions).

An instance of type '' is required to access non static member ' '

So i understand this problem, im suppose to make my var static. I get it, but i did it and still have the same problem. Obviously im overlooking something....
Inventory.js
private static var emptySlots:int;
public static function get EmptySlots():int{
return emptySlots;
}
public static function set EmptySlots(value:int){
emptySlots = value;
}
Then i call those function here....
Slot.js
if(IsEmpty()){
ChangeSprite(slotEmpty, slotHighlight);
Inventory.EmptySlots()++; // this is the line i try to reference
}
This is the error that gets thrown
Assets/Scripts/Slot.js(71,35): BCE0020: An instance of type 'Inventory' is required to access non static member 'EmptySlots'.
Unity Script doesn't support static properties, as far as I know. Though it is old, check this discussion: http://forum.unity3d.com/threads/static-getter-setter.59621/
Anyway, if it did, the correct syntax for its use would be:
Inventory.EmptySlots++;
So, I guess I'd stick with static functions on UnityScript:
private static var emptySlots:int;
public static function getEmptySlots():int{
return emptySlots;
}
public static function setEmptySlots(value:int){
emptySlots = value;
}
and
if(IsEmpty()){
ChangeSprite(slotEmpty, slotHighlight);
Inventory.setEmptySlots(Inventory.getEmptySlots()+1);
}

Get and Set attribute values of a class using aspectJ

I am using aspectj to add some field to a existing class and annotate it also.
I am using load time weaving .
Example :- I have a Class customer in which i am adding 3 string attributes. But my issues is that I have to set some values and get it also before my business call.
I am trying the below approach.
In my aj file i have added the below, my problem is in the Around pointcut , how do i get the attribute and set the attribute.
public String net.customers.PersonCustomer.getOfflineRiskCategory() {
return OfflineRiskCategory;
}
public void net.customers.PersonCustomer.setOfflineRiskCategory(String offlineRiskCategory) {
OfflineRiskCategory = offlineRiskCategory;
}
public String net.customers.PersonCustomer.getOnlineRiskCategory() {
return OnlineRiskCategory;
}
public void net.customers.PersonCustomer.setOnlineRiskCategory(String onlineRiskCategory) {
OnlineRiskCategory = onlineRiskCategory;
}
public String net.customers.PersonCustomer.getPersonCommercialStatus() {
return PersonCommercialStatus;
}
public void net.customers.PersonCustomer.setPersonCommercialStatus(String personCommercialStatus) {
PersonCommercialStatus = personCommercialStatus;
}
#Around("execution(* net.xxx.xxx.xxx.DataMigration.populateMap(..))")
public Object invoke(ProceedingJoinPoint joinPoint) throws Throwable {
Object arguments[] = joinPoint.getArgs();
if (arguments != null) {
HashMap<String, String> hMap = (HashMap) arguments[0];
PersonCustomer cus = (PersonCustomer) arguments[1];
return joinPoint.proceed();
}
If anyone has ideas please let me know.
regards,
FT
First suggestion, I would avoid mixing code-style aspectj with annotation-style. Ie- instead of #Around, use around.
Second, instead of getting the arguments from the joinPoint, you should bind them in the pointcut:
Object around(Map map, PersonCustomer cust) :
execution(* net.xxx.xxx.xxx.DataMigration.populateMap(Map, PersonCustomer) && args(map, cust) {
...
return proceed(map, cust);
}
Now, to answer your question: you also need to use intertype declarations to add new fields to your class, so do something like this:
private String net.customers.PersonCustomer.OfflineRiskCategory;
private String net.customers.PersonCustomer.OnlineRiskCategory;
private String net.customers.PersonCustomer.PersonCommercialStatus;
Note that the private keyword here means private to the aspect, not to the class that you declare it on.

Creating an object passing a lambda expression to the constructor

I have an object with a number of properties.
I want to be able to assign some of these properties when I call the constructor.
The obvious solution is to either have a constructor that takes a parameter for each of the properties, but that's nasty when there are lots. Another solution would be to create overloads that each take a subset of property values, but I could end up with dozens of overloads.
So I thought, wouldn't it be nice if I could say..
MyObject x = new MyObject(o => o.Property1 = "ABC", o.PropertyN = xx, ...);
The problem is, I'm too dim to work out how to do it.
Do you know?
C# 3 allows you to do this with its object initializer syntax.
Here is an example:
using System;
class Program
{
static void Main()
{
Foo foo = new Foo { Bar = "bar" };
}
}
class Foo
{
public String Bar { get; set; }
}
The way this works is that the compiler creates an instance of the class with compiler-generated name (like <>g__initLocal0). Then the compiler takes each property that you initialize and sets the value of the property.
Basically the compiler translates the Main method above to something like this:
static void Main()
{
// Create an instance of "Foo".
Foo <>g__initLocal0 = new Foo();
// Set the property.
<>g__initLocal0.Bar = "bar";
// Now create my "Foo" instance and set it
// equal to the compiler's instance which
// has the property set.
Foo foo = <>g__initLocal0;
}
The object initializer syntax is the easiest to use and requires no extra code for the constructor.
However, if you need to do something more complex, like call methods, you could have a constructor that takes an Action param to perform the population of the object.
public class MyClass
{
public MyClass(Action<MyClass> populator)
{
populator.Invoke(this);
}
public int MyInt { get; set; }
public void DoSomething()
{
Console.WriteLine(this.MyInt);
}
}
Now you can use it like so.
var x = new MyClass(mc => { mc.MyInt = 1; mc.DoSomething(); });
Basically what Andrew was trying to say is if you have a class (MyObject for eg) with N properties, using the Object Initializer syntax of C# 3.0, you can set any subset of the N properties as so:
MyObject x = new MyObject {Property1 = 5, Property4 = "test", PropertyN = 6.7};
You can set any of the properties / fields that way./
class MyObject
{
public MyObject(params Action<MyObject>[]inputs)
{
foreach(Action<MyObject> input in inputs)
{
input(this);
}
}
}
I may have the function generic style wrong, but I think this is sort of what you're describing.