MATLAB does not satisfy matrix arithmetic for inverse, that is;
(ABC)-1 = C-1 * B-1 * A-1
in MATLAB,
if inv(A*B*C) == inv(C)*inv(B)*inv(A)
disp('satisfied')
end
It does not qualify. When I made it format long, I realized that there is difference in points, but it even does not satisfy when I make it format rat.
Why is that so?
Very likely a floating point error. Note that the format function affects only how numbers display, not how MATLAB computes or saves them. So setting it to rat won't help the inaccuracy.
I haven't tested, but you may try the Fractions Toolbox for exact rational number arithmetics, which should give an equality to above.
Consider this (MATLAB R2011a):
a = 1e10;
>> b = inv(a)*inv(a)
b =
1.0000e-020
>> c = inv(a*a)
c =
1.0000e-020
>> b==c
ans =
0
>> format hex
>> b
b =
3bc79ca10c924224
>> c
c =
3bc79ca10c924223
When MATLAB calculates the intermediate quantities inv(a), or a*a (whether a is a scalar or a matrix), it by default stores them as the closest double precision floating point number - which is not exact. So when these slightly inaccurate intermediate results are used in subsequent calculations, there will be round off error.
Instead of comparing floating point numbers for direct equality, such as inv(A*B*C) == inv(C)*inv(B)*inv(A), it's often better to compare the absolute difference to a threshold, such as abs(inv(A*B*C) - inv(C)*inv(B)*inv(A)) < thresh. Here thresh can be an arbitrary small number, or some expression involving eps, which gives you the smallest difference between two numbers at the precision at which you're working.
The format command only controls the display of results at the command line, not the way in which results are internally stored. In particular, format rat does not make MATLAB do calculations symbolically. For this, you might take a look at the Symbolic Math Toolbox. format hex is often even more useful than format long for diagnosing floating point precision issues such as the one you've come across.
Related
I have a 12-bit binary that I need to convert to a decimal. For example:
A = [0,1,1,0,0,0,0,0,1,1,0,0];
Bit 1 is the most significant bit, Bit 12 is the least significant bit.
Note: This answer applies primarily to unsigned data types. For converting to signed types, a few extra steps are necessary, discussed here.
The bin2dec function is one option, but requires you to change the vector to a string first. bin2dec can also be slow compared to computing the number yourself. Here's a solution that's about 75 times faster:
>> A = [0,1,1,0,0,0,0,0,1,1,0,0];
>> B = sum(A.*2.^(numel(A)-1:-1:0))
B =
1548
To explain, A is multiplied element-wise by a vector of powers of 2, with the exponents ranging from numel(A)-1 down to 0. The resulting vector is then summed to give the integer represented by the binary pattern of zeroes and ones, with the first element in the array being considered the most significant bit. If you want the first element to be considered the least significant bit, you can do the following:
>> B = sum(A.*2.^(0:numel(A)-1))
B =
774
Update: You may be able to squeeze even a little more speed out of MATLAB by using find to get the indices of the ones (avoiding the element-wise multiplication and potentially reducing the number of exponent calculations needed) and using the pow2 function instead of 2.^...:
B = sum(pow2(find(flip(A))-1)); % Most significant bit first
B = sum(pow2(find(A)-1)); % Least significant bit first
Extending the solution to matrices...
If you have a lot of binary vectors you want to convert to integers, the above solution can easily be modified to convert all the values with one matrix operation. Suppose A is an N-by-12 matrix, with one binary vector per row. The following will convert them all to an N-by-1 vector of integer values:
B = A*(2.^(size(A, 2)-1:-1:0)).'; % Most significant bit first
B = A*(2.^(0:size(A, 2)-1)).'; % Least significant bit first
Also note that all of the above solutions automatically determine the number of bits in your vector by looking at the number of columns in A.
Dominic's answer assumes you have access to the Data Acquisition toolbox. If not use bin2dec:
A = [0,1,1,0,0,0,0,0,1,1,0,0];
bin2dec( sprintf('%d',A) )
or (in reverse)
A = [0,1,1,0,0,0,0,0,1,1,0,0];
bin2dec( sprintf('%d',A(end:-1:1)) )
depending on what you intend to be bit 1 and 12!
If the MSB is right-most (I'm not sure what you mean by Bit 1, sorry if that seems stupid):
Try:
binvec2dec(A)
Output should be:
ans =
774
If the MSB is left-most, use fliplr(A) first.
688^79 mod 3337 = 1570.
When I tried this at wolfram alpha I got:
but When I entered the same thing in Matlab, I get 364 as the answer. I got to be doing something wrong.
Any light on this will be appreciated.
The reason is that Matlab uses double floating-point arithmetic by default. A number as large as 688^79 can't be represented accurately as a double. (The largest integer than can be accurately represented as a double is of the order of 2^53).
To obtain the right result you can use symbolic variables, which ensures you don't lose accuracy:
>> x = sym('688^79');
>> y = sym('3337');
>> mod(x, y)
ans =
1570
My calculator is sending me the same answer than Wolfram, it also calculated the value for 688^79 so I would tend to believe Wolfram is right.
You probably have overrun the capacities of Matlab with such a huge number and it is why it did not send the right answer.
I am trying to calculate some integrals that use very high power exponents. An example equation is:
(-exp(-(x+sqrt(p)).^2)+exp(-(x-sqrt(p)).^2)).^2 ...
./( exp(-(x+sqrt(p)).^2)+exp(-(x-sqrt(p)).^2)) ...
/ (2*sqrt(pi))
where p is constant (1000 being a typical value), and I need the integral for x=[-inf,inf]. If I use the integral function for numeric integration I get NaN as a result. I can avoid that if I set the limits of the integration to something like [-20,20] and a low p (<100), but ideally I need the full range.
I have also tried setting syms x and using int and vpa, but in this case vpa returns:
1.0 - 1.0*numeric::int((1125899906842624*(exp(-(x - 10*10^(1/2))^2) - exp(-(x + 10*10^(1/2))^2))^2)/(3991211251234741*(exp(-(x - 10*10^(1/2))^2) + exp(-(x + 10*10^(1/2))^2)))
without calculating a value. Again, if I set the limits of the integration to lower values I do get a result (also for low p), but I know that the result that I get is wrong – e.g., if x=[-100,100] and p=1000, the result is >1, which should be wrong as the equation should be asymptotic to 1 (or alternatively the codomain should be [0,1) ).
Am I doing something wrong with vpa or is there another way to calculate high precision values for my integrals?
First, you're doing something that makes solving symbolic problems more difficult and less accurate. The variable pi is a floating-point value, not an exact symbolic representation of the fundamental constant. In Matlab symbolic math code, you should always use sym('pi'). You should do the same for any other special numeric values, e.g., sqrt(sym('2')) and exp(sym('1')), you use or they will get converted to an approximate rational fraction by default (the source of strange large number you see in the code in your question). For further details, I recommend that you read through the documentation for the sym function.
Applying the above, here's a runnable example:
syms x;
p = 1000;
f = (-exp(-(x+sqrt(p)).^2)+exp(-(x-sqrt(p)).^2)).^2./(exp(-(x+sqrt(p)).^2)...
+exp(-(x-sqrt(p)).^2))/(2*sqrt(sym('pi')));
Now vpa(int(f,x,-100,100)) and vpa(int(f,x,-1e3,1e3)) return exactly 1.0 (to 32 digits of precision, see below).
Unfortunately, vpa(int(f,x,-Inf,Inf)), does not return an answer, but a call to the underlying MuPAD function numeric::int. As I explain in this answer, this is what can happen when int cannot obtain a result. Normally, it should try to evaluate the the integral numerically, but your function appears to be ill-defined at ±∞, resulting in divide by zero issues that the variable precision quadrature methods can't handle well. You can evaluate the integral at wider bounds by increasing the variable precision using the digits function (just remember to set digits back to the default of 32 when done). Setting digits(128) allowed me to evaluate vpa(int(f,x,-1e4,1e4)). You can also more efficiently evaluate your integral over a wider range via 2*vpa(int(f,x,0,1e4)) at lower effective digits settings.
If your goal is to see exactly how much less than one p = 1000 corresponds to, you can use something like vpa(1-2*int(f,x,0,1e4)). At digits(128), this returns
0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000086457415971094118490438229708839420392402555445545519907545198837816908450303280444030703989603548138797600750757834260181259102
Applying double to this shows that it is approximately 8.6e-89.
How would I plot this function in maple?
f(x)= 1 if x is rational, 0 otherwise.
Also I want this to be within the interval 0<=x<=1
That function is not piecewise, and it cannot be plotted by any software. It's theoretically impossible. The best that you could do is plot a line segment from (0,1) to (1,1) to represent the rationals and another from (0,0) to (0,1) to represent the irrationals.
This is an old question now but is a good place to clarify just what a computer program could mean by "rational" and "irrational".
As a first attempt you could try to define your desired function this way:
f1 := x -> `if`(x::rational, 1, 0):
A few test cases seem to be giving us what we want:
> f1(3), f1(3/2), f1(Pi), f1(sqrt(2));
1, 1, 0, 0
However we then run into this:
> f1(1.5);
0
What gives? Since f(3/2)=1, we might expect f(1.5) to be the same. The explanation is that the check x::rational is checking that the input x is of the Maple type rational, which is an integer or a fraction. A Maple fraction is an ordered pair of integers (numerator and denominator) which is structurally different from a floating-point number.
A broader interpretation of the mathematical meaning of 'rational' would include the floating-point numbers. So we can broaden that definition and write:
f2 := x -> `if`(x::{rational,float}, 1, 0}:
and then we have the desired f2(1.5)=1.
But both of these are useless for plotting. When Maple plots something, it generates a set of sample points from the specified interval, all of which will be floating-point numbers. Of our previously-defined functions, f1 will then return zero for all these points, while f2 will return 1.
You won't do any better with other software. If you were to take a truly uniform sample of n points from some real interval, your resulting points would be irrational (in fact, transcendental). Almost all such numbers cannot be represented on a computer because they cannot be represented in any compact form, so any software that attempts such sampling will simply return a collection of n results with terminating decimal expansions.
As Carl suggested you can generate something resembling the plot you want with
> plot([0,1]);
I have a 12-bit binary that I need to convert to a decimal. For example:
A = [0,1,1,0,0,0,0,0,1,1,0,0];
Bit 1 is the most significant bit, Bit 12 is the least significant bit.
Note: This answer applies primarily to unsigned data types. For converting to signed types, a few extra steps are necessary, discussed here.
The bin2dec function is one option, but requires you to change the vector to a string first. bin2dec can also be slow compared to computing the number yourself. Here's a solution that's about 75 times faster:
>> A = [0,1,1,0,0,0,0,0,1,1,0,0];
>> B = sum(A.*2.^(numel(A)-1:-1:0))
B =
1548
To explain, A is multiplied element-wise by a vector of powers of 2, with the exponents ranging from numel(A)-1 down to 0. The resulting vector is then summed to give the integer represented by the binary pattern of zeroes and ones, with the first element in the array being considered the most significant bit. If you want the first element to be considered the least significant bit, you can do the following:
>> B = sum(A.*2.^(0:numel(A)-1))
B =
774
Update: You may be able to squeeze even a little more speed out of MATLAB by using find to get the indices of the ones (avoiding the element-wise multiplication and potentially reducing the number of exponent calculations needed) and using the pow2 function instead of 2.^...:
B = sum(pow2(find(flip(A))-1)); % Most significant bit first
B = sum(pow2(find(A)-1)); % Least significant bit first
Extending the solution to matrices...
If you have a lot of binary vectors you want to convert to integers, the above solution can easily be modified to convert all the values with one matrix operation. Suppose A is an N-by-12 matrix, with one binary vector per row. The following will convert them all to an N-by-1 vector of integer values:
B = A*(2.^(size(A, 2)-1:-1:0)).'; % Most significant bit first
B = A*(2.^(0:size(A, 2)-1)).'; % Least significant bit first
Also note that all of the above solutions automatically determine the number of bits in your vector by looking at the number of columns in A.
Dominic's answer assumes you have access to the Data Acquisition toolbox. If not use bin2dec:
A = [0,1,1,0,0,0,0,0,1,1,0,0];
bin2dec( sprintf('%d',A) )
or (in reverse)
A = [0,1,1,0,0,0,0,0,1,1,0,0];
bin2dec( sprintf('%d',A(end:-1:1)) )
depending on what you intend to be bit 1 and 12!
If the MSB is right-most (I'm not sure what you mean by Bit 1, sorry if that seems stupid):
Try:
binvec2dec(A)
Output should be:
ans =
774
If the MSB is left-most, use fliplr(A) first.