Related
A job came in to me that's built with CodeCharge - had a look at it and seems to be a pretty basic point-and-click site builder tool. Has anyone got any in-depth experience with it? My first reaction is one of horror and to just rebuild the code in Rails or PHP but I thought I'd ask the question first, maybe i'm missing something...
I'm currently evaluating it for use in quickly producing a back-office environment, and it seems a very comfortable way of getting an interface up and running quickly.
Once the code is generated it is simple, but easily modified for any special needs you have.
In short it is a very good tool (though it would seem that Iron Speed Designer is much better though much more expensive) for what it does - fast prototyping and almost no coding approach to developing a web application. In my opinion, not much different than a Ruby On Rails application in terms of functionality, and, I can generate the code in any language I want.
You have to realize, it is all about speed - some quality is thrown in, but it is a very generic of quality - this is NOT a custom application, mind you, the resulting code you get here might not be pretty but it is a few level higher than your average script kiddie code.
I'm seriously considering this tool for creating back-office applications for sites I develop - a fast and easy solution instead of mucking around in tables of data and useless and repetitive SQL code.
Codecharge is a powerful tool that I have used for over 10 years to build very large content management systems, CRMs and many other management type tools.
Its far from simple once you get into it, and honestly when you use a tool like Codecharge to cleanly generate your user interfaces, you end up with a healthier application that can last many many years.
For instance, I have three clients that have been running Codecharge created portals for over 10 years and they always comment how bug free they have been.
There is a learning curve to learning CodeCharge but it will also teach you what entire applications should have in place and it will please the executives every time because they can get functionality within hours or days rather than weeks or never.
Development teams will often not like it though, because they would rather hand code everything or use the latest and greatest approach to development.
When i start writing something complex, I find that restart the writing like 10 times before I end up with what I want, often discarding hundreds of lines of code.
Am I doing something wrong, or do others have workflows like this?
EDIT: Right now, I'm working on a modular compiler. The last project I was working on was a server in java. Before that it was some concurrency stuff.
I do a fair bit of planning, and I never start coding before I've got interfaces for everything.
Given that, is it normal to just wipe the slate clean repeatedly?
Discarding many lines of code is usually a positive aspect of refactoring. That's great. But starting over ten times means that you probably haven't analyzed your problem and solution. It's fine to backtrack and sometimes to start over but not that often. You should lay out your code in such a way that when you backtrack and refactor, you keep most of what you created because it will exist in nicely isolated and logical chunks. (Using vague language since language of choice wasn't specified.)
From author's comment:
Usually I restart because I get
confused by all the stuff going on in
my code.
Study your craft and make good use of design patterns and other best programming philosophies to lend your code a well-defined structure... something you'll recognize months and even days down the road.
If you're starting something complex, a little planning before you start writing would seem to be a good idea.
Design first.
Perfectly normal. No matter how much I plan ahead, I very often have an "Aha!" moment once the hands hit the keyboard.
Just as often it's a "What the heck was I thinking?" moment.
It's all good. You're making better code.
All the suggestions here are valid, however, remember that there's a moment in a programs lifetime that is "good enough". It's easy to fall into a trap of never ending refactoring, just because you see that "yes, this could be done better!". Well, face the truth -- unless your program has just a few lines, there's ALWAYS a way to do it better.
I believe there are happy programmers out there that don't suffer from that, but at least I need to keep reminding myself that there's a line that's called "good enough".
And it's especially true if you're writing code for someone else -- nobody will note that you did something "nicer", all that counts is "does it work well?".
Also, a VERY GOOD practice is at least to get it to WORK before rewriting. Then you can always fall back to a working previous solution.
(since 12 years I'm constantly rewriting a game I'm writing, and I'm nowhere near the end...)
On a complex problem, this is common. If you aren't totally stabbing in the dark, it really helps to sketch out our ideas first, but then again you're just moving the 'retries' from code to paper.
If it helps you get to a good solution, how can it be wrong?
It depends on how well I know the problem space. If it is familiar territory, then I'd be worried if it took 10 iterations. If it is unfamiliar territory, then it might take as many as 10 iterations, but at least some of them would be reduced to prototype - or an attempt at a prototype - before being discarded.
If you are learning something with each iteration then there probably isnt a problem. Deadlines and pesky things like that might make your life a little more difficult. :)
When I am working on a new problem I like to pseudocode it out in comments in the actual function handler, as part of generating the stub for my TDD. Then add the code in to each step I had in the comments of the function body.
It helps me to keep focused on what the problem that I am solving is, and not get lost in the details to early.
The single biggest change you can do to help yourself would be to plan your code first. On paper.
Your plan doesn't have to be super in-depth (although sometimes that's good too). Just sketch out a rough idea of what you want your program to do. Jot down the key functionality points. "I want it to do this, this and this".
Once you have that, sketch out a rough design. Classes, methods, functions, objects. Give it a little form. Do a rough allocation of functionality to various portions of your design.
Depending on the nature of the project, I might take a rough design such as that and turn it into a much more detailed design. If it's a small project, maybe not. But no matter the projected complexity, time spent designing will reward you with better code, and less time spent coding. If you have obvious mistakes that require you to refactor large portions of your program, they should be apparent in your initial design and you can adjust it. You won't have wasted hundreds of lines of code on an obvious mistake.
Compilers are very complex applications, and you can't write an optimizing compiler from start to finish in one pass - no matter how much thought you put into it at first. Usually you attempt to get something to work correctly from start to finish and then go back to modularizing it and adding new features like optimizations. This process means lots of refactoring and replacing whole sections outright. This is also part of the learning processes - as no one can know everything and remember it!
(I'm also working on a .NET compiler as part of the MOSA project - www.mosa-projet.org.)
solve your problem on paper . . . dont be in such a rush to type.
There are two situations. (1) I've been able to confidently plan ahead and isolated my abstractions. (2) I haven't.
For (1), an effective technique is to put in dummy versions of certain classes or functions just to drive the rest of the code. (or conversely, to write said classes and functions and drive them with a test script.) This allows you to tackle only part of the complexity in each pass.
As much as everyone says people should plan in advance, it often doesn't work that way, resulting in situation (2). Here, be careful to manage what you are trying to accomplish in one iteration of code. As soon as you find your brain unable to juggle all the things you are doing, scale back your ambition for what you want to achieve before the next compile-and-test. Allow your code to be flawed but easy-to-write on the first pass, and then develop it through refactoring. This improves efficiency over repeatedly wiping the slate clean.
For example, one way I used to get into messes was by sniffing out common code and refactoring into subroutines too early, before I really knew the shape of the code. I've since started allowing myself to duplicate code on the first pass, and then going back and factoring it into subroutines later. It has helped tremendously.
It's called refactoring buddy and it's good, you just need to limit it so you won't end up wasting all your time refactoring code you have and is working instead of writing new code.
Some of the reasons why one must refactor are:
Enhancing performance.
Organizing code.
You need to write your code in a different way to get something to work.
To do something in a different way because it saves a lot of work (i.e.: Using MXML instead of ActionScript).
You used the wrong name for a variable.
Consider learning some framework in whatever language you're using (or in any language for that matter).
I think that learning frameworks made my code a million times better. By learning the frameworks (and more importantly how they work) I learned not just design patterns, but how to implement them realistically.
Consider looking at rails, cakephp, or django (assuming you're in a scripting language; I don't know any desktop language frameworks. Sorry!). Then see how their pieces fit together.
I have noticed that when writing specs you waste a lot of time on things, that later, when you write your app are negligible, and you forget some important stuff.
I have found it to be faster (for me) to write a proof-of-concept application (no good error handlers and security stuff, minor gliches in the style etc) and use that as a spec for those who join me.
Still, I feel I am wasting time in this method too, any good ideas on how this should be done?
Seems like you're arguing in favor of Agile Development
Using this iterative process, our team is able to "rank" features on a scale of importance and then weigh the release date with the features they want (in a nutshell)
Joel On Software has an article about this you may find helpful. I think this question and the answer is quite user-specific and subjective though.
An interesting approach to a spec are "tests". For high-level stuff you write acceptance test using tools like Fitnesse and for low-level stuff you write unit-test.
Once a dev is done with coding, running the test suite verifies that all the spec is really working.
This approach expects that the person who writes the spec is capable of expressing himself in terms of tests. This is usually not true and therefore this approach is more like an utopia. But still, you might try it.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 10 months ago.
Improve this question
I've never written functional specs, I prefer to jump into the code and design things as I go. So far its worked fine, but for a recent personal project I'm writing out some specs which describe all the features of the product, and how it should 'work' without going into details of how it will be implemented, and I'm finding it very valuable.
What are your thoughts, do you write specs or do you just start coding and plan as you go, and which practice is better?
If you're driving from your home to the nearest grocery store, you probably don't need a map. But...
If you're driving to a place you've never been before in another state, you probably do.
If you're driving around at random for the fun of driving, you probably don't need a map. But...
If you're trying to get somewhere in the most effective fashion (minimize distance, minimize time, make three specific stops along the way, etc.) you probably do.
If you're driving by yourself and can take as long as you like, stopping any time you see something interesting or to reconsider your destination or route, you may not need a map. But...
If you're driving as part of a convoy, and all need to make food and overnight lodging stops together, and need to arrive together, you probably do.
If you think I'm not talking about programming, you probably don't need a functional spec, story cards, narrative, CRCs, etc. But...
If you think I am, you might want to consider at least one of the above.
;-)
For someone who "jumps into the code" and "design[s] as they go", I would say writing anything including a functional spec is better than your current methods. A great deal of time and effort can be saved if you take the time to think it through and design it before you even start.
Requirements help define what you need to make.
Design helps define what you are planning on making.
User Documentation defines what you did make.
You'll find that most places will have some variation of these three documents. The functional spec can be lumped into the design document.
I'd recommend reading Rapid Development if you're not convinced. You truely can get work done faster if you take more time to plan and design.
Jumping "straight to code" for large software projects would almost surely lead to failure (as immediatley starting posing bricks to build a bridge would).
The guys at 37 Signals would say that is better to write a short document on paper than writing a complex spec. I'd say that this could be true for mocking up quickly new websites (where the design and the idea could lead better than a rigid schema), but not always acceptable in other real life situations.
Just think of the (legal, even) importance a spec document signed by your customer can have.
The morale probably is: be flexible, and plan with functional or technical specs as much as you need, according to your project's scenario.
For one-off hacks and small utilities, don't bother.
But if you're writing a serious, large application, and have demanding customers and has to run for a long time, it's a MUST. Read Joel's great articles on the subject - they're a good start.
I do it both ways, but I've learned something from Test Driven Development...
If you go into coding with a roadmap you will get to the end of the trip a helluva lot faster than you will if you just start walking down the road without having any idea of how it is going to fork in the middle.
You don't have to write down every detail of what every function is going to do, but define you basics so that way you know what you should get done to make everything work well together.
All that being said, I needed to write a series of exception handlers yesterday and I just dove right in without trying to architect it out at all. Maybe I should reread my own advice ;)
What a lot of people don't want to admit or realize is that software development is an engineering discipline. A lot can be learned as to how they approach things. Mapping out what your going to do in an application isn't necessarily vital on small projects as it is normally easier to quickly go back and fix your mistakes. You don't see how much time is wasted compared to writing down what the system is going to do first.
In reality in large projects its almost necessary to have road map of how the system works and what it does. Call it a Functional Spec if you will, but normally you have to have something that can show you why step b follows step a. We all think we can think it up on the fly (I am definitely guilty of this too), but in reality it causes us problems. Think back and ask yourself how many times you encountered something and said to yourself "Man I wish I would have thought of that earlier?" Or someone else see's what you've done, and showed you that you could have take 3 steps to accomplish a task where you took 10.
Putting it down on paper really forces you to think about what your going to do. Once it's on paper it's not a nebulous thought anymore and then you can look at it and evaluate if what you were thinking really makes sense. Changing a one page document is easier than changing 5000 lines of code.
If you are working in an XP (or similar) environment, you'll use stories to guide development along with lots of unit and hallway useability testing (I've drunk the Kool-Aid, I guess).
However, there is one area where a spec is absolutely required: when coordinating with an external team. I had a project with a large insurance company where we needed to have an agreement on certain program behaviors, some aspects of database design and a number of file layouts. Without the spec, I was wide open to a creative interpretation of what we had promised. These were good people - I trusted them and liked working with them. But still, without that spec it would have been a death march. With the spec, I could always point out where they had deviated from the agreed-to layout or where they were asking for additional custom work ($$!). If working with a semi-antagonistic relationship, the spec can save you from even worse: a lawsuit.
Oh yes, and I agree with Kieveli: "jumping right to code" is almost never a good idea.
I would say it totally "depends" on the type of problem. I tend to ask myself am I writing it for the sake of it or for the layers above you. I also had debated this and my personal experience says, you should since it keeps the project on track with the expectations (rather than going off course).
I like to decompose any non trivial problems loosely on paper first, rather than jumping in to code, for a number of reasons;
The stuff i write on paper doesn't have to compile or make any sense to a computer
I can work at arbitrary levels of abstraction on paper
I can add pictures and diagrams really easily
I can think through and debug a concept very quickly
If the problem I'm dealing with is likely to involve either a significant amount of time, or a number of other people, I'll write it up as an outline functional spec. If I'm being paid by someone else to develop the software, and there is any potential for ambiguity, I will add enough extra detail to remove this ambiguity. I also like to use this documentation as a starting point for developing automated test cases, once the software has been written.
Put another way, I write enough of a functional specification to properly understand the software I am writing myself, and to resolve any possibile ambiguities for anyone else involved.
I rarely feel the need for a functional spec. OTOH I always have the user responsible for the feature a phone call away, so I can always query them for functional requirements as I go.
To me a functional spec is more of a political tool than technical. I guess once you have a spec you can always blame the spec if you later discover problems with the implementation. But who to blame is really of no interest to me, the problem will still be there even if you find a scapegoat, better then to revisit the implementation and try to do it right.
It's virtually impossible to write a good spec, because you really don't know enough of either the problem or the tools or future changes in the environment to do it right.
Thus I think it's much more important to adapt an agile approach to development and dedicate enough resources and time to revisit and refactor as you go.
It's important not to write them: There's Nothing Functional about a Functional Spec
I'm at a point in my freelance career where I've developed several web applications for small to medium sized businesses that support things such as project management, booking/reservations, and email management.
I like the work but find that eventually my applications get to a point where the overhear for maintenance is very high. I look back at code I wrote 6 months ago and find I have to spend a while just relearning how I originally coded it before I can make a fix or feature additions. I do try to practice using frameworks (I've used Zend Framework before, and am considering Django for my next project)
What techniques or strategies do you use to plan out an application that is capable of handling a lot of users without breaking and still keeping the code clean enough to maintain easily?
If anyone has any books or articles they could recommend, that would be greatly appreciated as well.
Although there are certainly good articles on that topic, none of them is a substitute of real-world experience.
Maintainability is nothing you can plan straight ahead, except on very small projects. It is something you need to take care of during the whole project. In fact, creating loads of classes and infrastructure code in advance can produce code which is even harder to understand than naive spaghetti code.
So my advise is to clean up your existing projects, by continuously refactoring them. Look at the parts which were a pain to change, and strive for simpler solutions that are easier to understand and to adjust. If the code is even too bad for that, consider rewriting it from scratch.
Don't start new projects and expect them to succeed, just because your read some more articles or used a new framework. Instead, identify the failures of your existing projects and fix their specific problems. Whenever you need to change your code, ask yourself how to restructure it to support similar changes in the future. This is what you need to do anyway, because there will be similar changes in the future.
By doing those refactorings you'll stumble across various specific questions you can ask and read articles about. That way you'll learn more than by just asking general questions and reading general articles about maintenance and frameworks.
Start cleaning up your code today. Don't defer it to your future projects.
(The same is true for documentation. Everyone's first docs were very bad. After several months they turn out to be too verbose and filled with unimportant stuff. So complement the documentation with solutions to the problems you really had, because chances are good that next year you'll be confronted with a similar problem. Those experiences will improve your writing style more than any "how to write good" style guide.)
I'd honestly recommend looking at Martin Fowlers Patterns of Enterprise Application Architecture. It discusses a lot of ways to make your application more organized and maintainable. In addition, I would recommend using unit testing to give you better comprehension of your code. Kent Beck's book on Test Driven Development is a great resource for learning how to address change to your code through unit tests.
To improve the maintainability you could:
If you are the sole developer then adopt a coding style and stick to it. That will give you confidence later when navigating through your own code about things you could have possibly done and the things that you absolutely wouldn't. Being confident where to look and what to look for and what not to look for will save you a lot of time.
Always take time to bring documentation up to date. Include the task into development plan; include that time into the plan as part any of change or new feature.
Keep documentation balanced: some high level diagrams, meaningful comments. Best comments tell that cannot be read from the code itself. Like business reasons or "whys" behind certain chunks of code.
Include into the plan the effort to keep code structure, folder names, namespaces, object, variable and routine names up to date and reflective of what they actually do. This will go a long way in improving maintainability. Always call a spade "spade". Avoid large chunks of code, structure it by means available within your language of choice, give chunks meaningful names.
Low coupling and high coherency. Make sure you up to date with techniques of achieving these: design by contract, dependency injection, aspects, design patterns etc.
From task management point of view you should estimate more time and charge higher rate for non-continuous pieces of work. Do not hesitate to make customer aware that you need extra time to do small non-continuous changes spread over time as opposed to bigger continuous projects and ongoing maintenance since the administration and analysis overhead is greater (you need to manage and analyse each change including impact on the existing system separately). One benefit your customer is going to get is greater life expectancy of the system. The other is accurate documentation that will preserve their option to seek someone else's help should they decide to do so. Both protect customer investment and are strong selling points.
Use source control if you don't do that already
Keep a detailed log of everything done for the customer plus any important communication (a simple computer or paper based CMS). Refresh your memory before each assignment.
Keep a log of issues left open, ideas, suggestions per customer; again refresh your memory before beginning an assignment.
Plan ahead how the post-implementation support is going to be conducted, discuss with the customer. Make your systems are easy to maintain. Plan for parameterisation, monitoring tools, in-build sanity checks. Sell post-implementation support to customer as part of the initial contract.
Expand by hiring, even if you need someone just to provide that post-implementation support, do the admin bits.
Recommended reading:
"Code Complete" by Steve Mcconnell
Anything on design patterns are included into the list of recommended reading.
The most important advice I can give having helped grow an old web application into an extremely high available, high demand web application is to encapsulate everything. - in particular
Use good MVC principles and frameworks to separate your view layer from your business logic and data model.
Use a robust persistance layer to not couple your business logic to your data model
Plan for statelessness and asynchronous behaviour.
Here is an excellent article on how eBay tackles these problems
http://www.infoq.com/articles/ebay-scalability-best-practices
Use a framework / MVC system. The more organised and centralized your code is the better.
Try using Memcache. PHP has a built in extension for it, it takes about ten minutes to set up and another twenty to put in your application. You can cache whatever you want to it - I cache all my database records in it - for every application. It does wanders.
I would recommend using a source control system such as Subversion if you aren't already.
You should consider maybe using SharePoint. It's an environment that is already designed to do all you have mentioned, and has many other features you maybe haven't thought about (but maybe you will need in the future :-) )
Here's some information from the official site.
There are 2 different SharePoint environments you can use: Windows Sharepoint Services (WSS) or Microsoft Office Sharepoint Server (MOSS). WSS is free and ships with Windows Server 2003, while MOSS isn't free, but has much more features and covers almost all you enterprise's needs.