I have a set of laser range finder data, after transform it to global frame, it has negative and floating point data, for example the x-y coordinate are:
x=[1.1 -2.2 3.45]
y=[0 4.67 -5.6]
how to use matlab hough transform to extract line?
it seems the input must be an image.
You don't need the Hough transform.
Instead, find the best line using the Least Squares method:
p = polyfit(x,y,1);
figure();
scatter(x,y);
hold on;
plot(x,polyval(p,x));
You can read about least squares here:
http://en.wikipedia.org/wiki/Linear_least_squares_%28mathematics%29
I am currently facing a similar problem. One of the methods you could use to extract features is RANSAC.
With this you could match some lines and then extract features from the line intersections. Obviously this method is better with a large dataset. And with most Laser range finders you get several hundred points.
Related
I am trying to write a MATLAB script to give me a contour map. The contour map must be created from inputs that I generated from 100 images.
The story is like this:
I have 100 images on which I ran an image processing algorithm for optimization. Now, I got their energy curves. So, I have 100 energy curves. I want to create a contour map that will show me where the points are denser on the plot. (the energy curves are plotted as energy vs. iteration with fixed number of iterations)
The following is my variable:
energy(iteration,numImages)
Hope I explained it well.
Thanks in advance.
I interpret your question to boil down to how can I create a surface plot with colors according to the energy found in energy. I would solve this by using the contour function with a grid generated using meshgrid. If each image is described in 1000 data points with 100 files the plot can be generated as follows:
% using stuff as random junk instead of energy
numPoints = 1000;
numFiles = 100;
stuff = rand(1000,100); % replace with actual information
[X, Y] = meshgrid(1:numFiles, 1:numPoints);
contour(X,Y,stuff);
You can also create a 3D surface plot using surf and the same logic.
From what i see of you graph (and using the comments also), one possible way is to use plot3 to plot a line in 3D for every plot.
For doing so, you can use something like this code:
x=(0:0.01:1)';
aexp=zeros(100,numel(x));
hold on
for ii=1:100;
% aexp(ii,:)=exp((-x+ii/10)); %exponential
aexp(ii,:)=exp(-(x-ii/100).^2); %~gaussian
% aexp(ii,:)= x*ii; %linear increase
plot3(x,aexp(ii,:),ii*ones(1,numel(x)));
end
% set(gca,'yscale','log'); % uncomment if you need logscale.
giving
I have a few options of plot. It always plot from the XY view. I changed by hand, but you can use the view command. Notice that i used a simple counter to make the spacing in the z direction.
In a similar manner, you can plot using the contour. For my code, after the data have been generated in the for loop, remove/comment the plot3 and add:
contour(aexp) %outside the for loop,
giving
Notice that i have not really take care what i'm plotting. You can find more info on contour in the Matlab page .
You commented that the x-axis should be number of iterations, y-axis should be energy and z-axis should be the information containing how many lines are passing through from some areas. For this, make a qq variable, being it qq=number_of_lines(number of iterations,energy) . Make a discrete grid for the energy if you don't have one. Number of iterations is probably discrete anyway. The function is you who need to devise, but i would go for something which checks the number of lines for every energy and every iteration. In this case you will have the z-function that depends on y and x, that is the case to use contour or surface.
My function above make a line for every ii point, to have a 3d function. An edition for another extra loop is not hard. Just remember to have the same regular grid for every point, otherwise you will have trouble.
I have the following coordinate system of (x,y) and attached z value to each coordinate. I need to keep the coordinates the same without using some linear fit function to change it into a grid system of some sort. Is there a way i can create a contour of that data using that data only and not using griddata or something.
x=[0.2,0.2,0.05,1.1,0.8,0.9,1.8,1.9,2.05];
y=[0,1.1,2.1,0.1,1.1,2.2,0.15,1.1,2.05];
z=[0,1,0,0,2,1,0,1,0;];
plot(x,y, 'bo')
The reason is i have another model with 540 thousand coordinate points that is a weird shape and if i start using the other functions it loses its shape and goes rectangular.
One option you have is to use fitto create a fit surface of your data, and then directly plot it. This also has the advantage to give you extra parameters to control the interpolation between your points.
f=fit([x',y'],z','linearinterp')
plot(f,'Style','Contour')
Will create something like:
And
f=fit([x',y'],z','cubicinterp')
plot(f,'Style','Contour')
Will smooth the interpolation into:
Please look here for more information on fit and fit plotting options
https://www.mathworks.com/help/curvefit/fit.html#inputarg_fitType
https://www.mathworks.com/help/curvefit/plot.html
I have 8 plots which I want to implement in my Matlab code. These plots originate from several research papers, hence, I need to digitize them first in order to be able to use them.
An example of a plot is shown below:
This is basically a surface plot with three different variables. I know how to digitize a regular plot with just X and Y coordinates. However, how would one digitize a graph like this? I am quite unsure, hence, the question.
Also, If I would be able to obtain the data from this plot. How would you be able to utilize it in your code? Maybe with some interpolation and extrapolation between the given data points?
Any tips regarding this topic are welcome.
Thanks in advance
Here is what I would suggest:
Read the image in Matlab using imread.
Manually find the pixel position of the left bottom corner and the upper right corner
Using these pixels values and the real numerical value, it is simple to determine the x and y value of every pixel. I suggest you use meshgrid.
Knowing that the curves are in black, then remove every non-black pixel from the image, which leaves you only with the curves and the numbers.
Then use the function bwareaopen to remove the small objects (the numbers). Don't forget to invert the image to remove the black instead of the white.
Finally, by using point #3 and the result of point #6, you can manually extract the data of the graph. It won't be easy, but it will be feasible.
You will need the data for the three variables in order to create a plot in Matlab, which you can get either from the previous research or by estimating and interpolating values from the plot. Once you get the data though, there are two functions that you can use to make surface plots, surface and surf, surf is pretty much the same as surface but includes shading.
For interpolation and extrapolation it sounds like you might want to check out 2D interpolation, interp2. The interp2 function can also do extrapolation as well.
You should read the documentation for these functions and then post back with specific problems if you have any.
I'm currently producing a contour plot using
contour(x,y,z)
However, I would like to specify some additional contour lines to the ones provided.
I understand that I can use contour(x,y,z,v) where v is some vector containing values of the contour levels I would like but I don't really want to use this since I don't know exactly the levels.
Instead is it possible to plot the contour that goes through a specific point (x,y)?
Thanks.
You can overplot a second contour with a single, specific value for the contour, optionally specifying parameters like line width to make it obvious:
contour(x,y,z)
hold on
lev = z(n,m); % find the value you want in z
contour(x,y,z,lev,'Linewidth',2);
I have a formula that depends on theta and phi (spherical coordinates 0<=theta<=2*pi and 0<=phi<=pi). By inserting each engle, I obtained a quantity. Now I have a set of data for different angles and I need to plot the surface. My data is a 180*360 matrix, so I am not sure if I can use SURF or MESH or PLOT3. The figure should be a surface that include all data and the axes should be in terms of the quantity, not the quantity versus the angles. How can I plot such a surface?
I see no reason why you cannot use mesh or surf to plot such data. Another option I tend to use is that of density plots. You basically display the dependent variable (quantity) as an image and include the independent variables (angles) along the axis, much like you would with the aforementioned 3D plotting functions. This can be done with imagesc.
Typically you would want your axes to be the dependent variables. Could you elaborate more on this point?
If I understand you correctly you have calculated a function f(theta,phi) and now you want to plot the surface containing all the points with the polar coordinated (r,theta,phi) where r=f(theta,phi).
If this is what you want to do, the 2D version of such a plot is included in MATLAB under the name polar. Unfortunately, as you pointed out, polar3 on MatlabCentral is not the generalization you are looking for.
I have been able to plot a sphere with the following code, using constant r=1. You can give it a try with your function:
phi1=0:1/(3*pi):pi; %# this would be your 180 points
theta1=-pi:1/(3*pi):pi; % your 360 points
r=ones(numel(theta1),numel(phi1));
[phi,theta]=meshgrid(phi1,theta1);
x=r.*sin(theta).*cos(phi);
y=r.*sin(theta).*sin(phi);
z=r.*cos(theta);
tri=delaunay(x(:),y(:),z(:));
trisurf(tri,x,y,z);
From my tests it seems that delaunay also includes a lot of triangles which go through the volume of my sphere, so it seems this is not optimal. So maybe you can have a look at fill3 and construct the triangles it draws itself: as a first approximation, you could have the points [x(n,m) x(n+1,m) x(n,m+1)] combined into one triangle, and [x(n+1,m) x(n+1,m+1) x(n+1,m+1)] into another...?