How to run multiple trials in this Matlab program without iteration step? - matlab

I have a simple Matlab program that uses a set of random number lists and runs a series of trials using those numbers. Right now, the trials are run iteratively using the code below. How could this code be modified to eliminate the need for that iterative step? The program would be a lot more efficient if it could be properly vectorized.
size = 1000;
trials = 1000;
grid = zeros(size,size);
rx1 = randi(size,trials,1);
ry1 = randi(size,trials,1);
rx2 = randi(size,trials,1);
ry2 = randi(size,trials,1);
xmin = min(rx1,rx2);
xmax = max(rx1,rx2);
ymin = min(ry1,ry2);
ymax = max(ry1,ry2);
%This is the loop that I want to eliminate
for n=1:trials;
grid(ymin(n):ymax(n),xmin(n):xmax(n)) = grid(ymin(n):ymax(n),xmin(n):xmax(n)) + 1;
end
figure
mesh(grid);

I would use a trick inspired by integral images:
grid(ymin(n):ymax(n),xmin(n):xmax(n))=1;
is equivalent to:
grid(ymin(n),xmin(n))=1;
grid(ymin(n),xmax(n)+1)=-1;
grid(ymax(n)+1,xmin(n))=-1;
grid(ymax(n)+1,xmax(n)+1)=1;
grid=cumsum(cumsum(grid,1),2);
So for your problem I would do:
grid = zeros(size+1,size+1);
grid=full( sparse(ymin,xmin,1,size+1,size+1)...
+sparse(ymax+1,xmax+1,1,size+1,size+1)...
-sparse(ymin,xmax+1,1,size+1,size+1)...
-sparse(ymax+1,xmin,1,size+1,size+1));
grid=cumsum(cumsum(grid,1),2);
grid=grid(1:end-1,1:end-1);
I've tested it on my laptop. Results are same:
Elapsed time for code with loop is 1.802788 seconds.
Elapsed time for vectorized code is 0.033834 seconds.

Related

Optimising loop: simple operations but large number of iterations taking long

I am running a piece of Matlab code that is taking almost 70 hours and I'm sure there's a more efficient way of scripting it, but I cannot figure out how.
Looping over 1 iteration takes 1 second. The problem of course is that length(i) is 186144.
braindip = normrnd(0, 50, 186144,3);
nobrain = normrnd(0, 45, 25014656,3);
ok = 1;
alpha = 2;
h = waitbar(0,'Please wait...');
dip_away = nan(size(braindip));
for i = 1:size(braindip,1)
tic
h_norm = repmat(braindip(i,:), size(nobrain,1),1);
nn = sqrt(sum((h_norm - nobrain).^2,2));
if min(nn) > alpha
dip_away(ok,:) = braindip(i,:);
ok = ok+1;
end
toc
waitbar(i / size(braindip,1))
end
Does any one have a clever suggestion for optimising this loop? Thanks very much!
Assuming you are using MATLAB 2016b or later, which supports automatic broadcasting, you can change:
h_norm = repmat(braindip(i,:), size(nobrain,1),1);
nn = sqrt(sum((h_norm - nobrain).^2,2));
to
nn = sqrt(sum((braindip(i,:) - nobrain).^2,2));
A second option would be, to eliminate the sqrt. Use:
nn_qbd = sum((braindip(i,:) - nobrain).^2,2);
if min(nn_qbd) > alpha_qbd
Where alpha_qbd=alpha.^2, obviously calculated only once in advance. This leads to the third step, no need to store nn_qbd in a variable. You are only interested in the minimum:
nn_qbd_min = min(sum((braindip(i,:) - nobrain).^2,2));
if nn_qbd_min > alpha_qbd
Comparing the original code to the third option, the execution time is roughly cut in half.

Fastest approach to copying/indexing variable parts of 3D matrix

I have large sets of 3D data consisting of 1D signals acquired in 2D space.
The first step in processing this data is thresholding all signals to find the arrival of a high-amplitude pulse. This pulse is present in all signals and arrives at different times.
After thresholding, the 3D data set should be reordered so that every signal starts at the arrival of the pulse and what came before is thrown away (the end of the signals is of no importance, as of now i concatenate zeros to the end of all signals so the data remains the same size).
Now, I have implemented this in the following manner:
First, i start by calculating the sample number of the first sample exceeding the threshold in all signals
M = randn(1000,500,500); % example matrix of realistic size
threshold = 0.25*max(M(:,1,1)); % 25% of the maximum in the first signal as threshold
[~,index] = max(M>threshold); % indices of first sample exceeding threshold in all signals
Next, I want all signals to be shifted so that they all start with the pulse. For now, I have implemented it this way:
outM = zeros(size(M)); % preallocation for speed
for i = 1:size(M,2)
for j = 1:size(M,3)
outM(1:size(M,1)+1-index(1,i,j),i,j) = M(index(1,i,j):end,i,j);
end
end
This works fine, and i know for-loops are not that slow anymore, but this easily takes a few seconds for the datasets on my machine. A single iteration of the for-loop takes about 0.05-0.1 sec, which seems slow to me for just copying a vector containing 500-2000 double values.
Therefore, I have looked into the best way to tackle this, but for now I haven't found anything better.
I have tried several things: 3D masks, linear indexing, and parallel loops (parfor).
for 3D masks, I checked to see if any improvements are possible. Therefore i first contruct a logical mask, and then compare the speed of the logical mask indexing/copying to the double nested for loop.
%% set up for logical mask copying
AA = logical(ones(500,1)); % only copy the first 500 values after the threshold value
Mask = logical(zeros(size(M)));
Jepla = zeros(500,size(M,2),size(M,3));
for i = 1:size(M,2)
for j = 1:size(M,3)
Mask(index(1,i,j):index(1,i,j)+499,i,j) = AA;
end
end
%% speed comparison
tic
Jepla = M(Mask);
toc
tic
for i = 1:size(M,2)
for j = 1:size(M,3)
outM(1:size(M,1)+1-index(1,i,j),i,j) = M(index(1,i,j):end,i,j);
end
end
toc
The for-loop is faster every time, even though there is more that's copied.
Next, linear indexing.
%% setup for linear index copying
%put all indices in 1 long column
LongIndex = reshape(index,numel(index),1);
% convert to linear indices and store in new variable
linearIndices = sub2ind(size(M),LongIndex,repmat(1:size(M,2),1,size(M,3))',repelem(1:size(M,3),size(M,2))');
% extend linear indices with those of all values to copy
k = zeros(numel(M),1);
count = 1;
for i = 1:numel(LongIndex)
values = linearIndices(i):size(M,1)*i;
k(count:count+length(values)-1) = values;
count = count + length(values);
end
k = k(1:count-1);
% get linear indices of locations in new matrix
l = zeros(length(k),1);
count = 1;
for i = 1:numel(LongIndex)
values = repelem(LongIndex(i)-1,size(M,1)-LongIndex(i)+1);
l(count:count+length(values)-1) = values;
count = count + length(values);
end
l = k-l;
% create new matrix
outM = zeros(size(M));
%% speed comparison
tic
outM(l) = M(k);
toc
tic
for i = 1:size(M,2)
for j = 1:size(M,3)
outM(1:size(M,1)+1-index(1,i,j),i,j) = M(index(1,i,j):end,i,j);
end
end
toc
Again, the alternative approach, linear indexing, is (a lot) slower.
After this failed, I learned about parallelisation, and though this would for sure speed up my code.
By reading some of the documentation around parfor and trying it out a bit, I changed my code to the following:
gcp;
outM = zeros(size(M));
inM = mat2cell(M,size(M,1),ones(size(M,2),1),size(M,3));
tic
parfor i = 1:500
for j = 1:500
outM(:,i,j) = [inM{i}(index(1,i,j):end,1,j);zeros(index(1,i,j)-1,1)];
end
end
end
toc
I changed it so that "outM" and "inM" would both be sliced variables, as I read this is best. Still this is very slow, a lot slower than the original for loop.
So now the question, should I give up on trying to improve the speed of this operation? Or is there another way in which to do this? I have searched a lot, and for now do not see how to speed this up.
Sorry for the long question, but I wanted to show what I tried.
Thank you in advance!
Not sure if an option in your situation, but looks like cell arrays are actually faster here:
outM2 = cell(size(M,2),size(M,3));
tic;
for i = 1:size(M,2)
for j = 1:size(M,3)
outM2{i,j} = M(index(1,i,j):end,i,j);
end
end
toc
And a second idea which also came out faster, batch all data which have to be shifted by the same value:
tic;
for i = 1:unique(index).'
outM(1:size(M,1)+1-i,index==i) = M(i:end,index==i);
end
toc
It totally depends on your data if this approach is actually faster.
And yes integer valued and logical indexing can be mixed

Vectorizing a matlab loop with internal functions

I have a 3D Mesh grid, X, Y, Z. I want to create a new 3D array that is a function of X, Y, & Z. That function comprises the sum of several 3D Gaussians located at different points. Currently, I have a for loop that runs over the different points where I have my gaussians, and I have an array of center locations r0(nGauss, 1:3)
[X,Y,Z]=meshgrid(-10:.1:10);
Psi=0*X;
for index = 1:nGauss
Psi = Psi + Gauss3D(X,Y,Z,[r0(index,1),r0(index,2),r0(index,3)]);
end
where my 3D gaussian function is
function output=Gauss3D(X,Y,Z,r0)
output=exp(-(X-r0(1)).^2 + (Y-r0(2)).^2 + (Z-r0(3)).^2);
end
I'm happy to redesign the function, which is the slowest part of my code and has to happen many many time, but I can't figure out how to vectorize this so that it will run faster. Any suggestions would be appreciated
*****NB the Original function had a square root in it, and has been modified to make it an actual gaussian***
NOTE! I've modified your code to create a Gaussian, which was:
output=exp(-sqrt((X-r0(1)).^2 + (Y-r0(2)).^2 + (Z-r0(3)).^2));
That does not make a Gaussian. I changed this to:
output = exp(-((X-r0(1)).^2 + (Y-r0(2)).^2 + (Z-r0(3)).^2));
(note no sqrt). This is a Gaussian with sigma = sqrt(1/2).
If this is not what you want, then this answer might not be very useful to you, because your function does not go to 0 as fast as the Gaussian, and therefore is harder to truncate, and it is not separable.
Vectorizing this code is pointless, as the other answers attest. MATLAB's JIT is perfectly capable of running this as fast as it'll go. But you can reduce the amount of computation significantly by noting that the Gaussian goes to almost zero very quickly, and is separable:
Most of the exp evaluations you're doing here yield a very tiny number. You don't need to compute those, just fill in 0.
exp(-x.^2-y.^2) is the same as exp(-x.^2).*exp(-y.^2), which is much cheaper to compute.
Let's put these two things to the test. Here is the test code:
function gaussian_test
N = 100;
r0 = rand(N,3)*20 - 10;
% Original
tic
[X,Y,Z] = meshgrid(-10:.1:10);
Psi1 = zeros(size(X));
for index = 1:N
Psi1 = Psi1 + Gauss3D(X,Y,Z,r0(index,:));
end
t = toc;
fprintf('original, time = %f\n',t)
% Fast, large truncation
tic
[X,Y,Z] = deal(-10:.1:10);
Psi2 = zeros(numel(X),numel(Y),numel(Z));
for index = 1:N
Psi2 = Gauss3D_fast(Psi2,X,Y,Z,r0(index,:),5);
end
t = toc;
fprintf('tuncation = 5, time = %f\n',t)
fprintf('mean abs error = %f\n',mean(reshape(abs(Psi2-Psi1),[],1)))
fprintf('mean square error = %f\n',mean(reshape((Psi2-Psi1).^2,[],1)))
fprintf('max abs error = %f\n',max(reshape(abs(Psi2-Psi1),[],1)))
% Fast, smaller truncation
tic
[X,Y,Z] = deal(-10:.1:10);
Psi3 = zeros(numel(X),numel(Y),numel(Z));
for index = 1:N
Psi3 = Gauss3D_fast(Psi3,X,Y,Z,r0(index,:),3);
end
t = toc;
fprintf('tuncation = 3, time = %f\n',t)
fprintf('mean abs error = %f\n',mean(reshape(abs(Psi3-Psi1),[],1)))
fprintf('mean square error = %f\n',mean(reshape((Psi3-Psi1).^2,[],1)))
fprintf('max abs error = %f\n',max(reshape(abs(Psi3-Psi1),[],1)))
% DIPimage, same smaller truncation
tic
Psi4 = newim(201,201,201);
coords = (r0+10) * 10;
Psi4 = gaussianblob(Psi4,coords,10*sqrt(1/2),(pi*100).^(3/2));
t = toc;
fprintf('DIPimage, time = %f\n',t)
fprintf('mean abs error = %f\n',mean(reshape(abs(Psi4-Psi1),[],1)))
fprintf('mean square error = %f\n',mean(reshape((Psi4-Psi1).^2,[],1)))
fprintf('max abs error = %f\n',max(reshape(abs(Psi4-Psi1),[],1)))
end % of function gaussian_test
function output = Gauss3D(X,Y,Z,r0)
output = exp(-((X-r0(1)).^2 + (Y-r0(2)).^2 + (Z-r0(3)).^2));
end
function Psi = Gauss3D_fast(Psi,X,Y,Z,r0,trunc)
% sigma = sqrt(1/2)
x = X-r0(1);
y = Y-r0(2);
z = Z-r0(3);
mx = abs(x) < trunc*sqrt(1/2);
my = abs(y) < trunc*sqrt(1/2);
mz = abs(z) < trunc*sqrt(1/2);
Psi(my,mx,mz) = Psi(my,mx,mz) + exp(-x(mx).^2) .* reshape(exp(-y(my).^2),[],1) .* reshape(exp(-z(mz).^2),1,1,[]);
% Note! the line above uses implicit singleton expansion. For older MATLABs use bsxfun
end
This is the output on my machine, reordered for readability (I'm still on MATLAB R2017a):
| time(s) | mean abs | mean sq. | max abs
--------------+----------+----------+----------+----------
original | 5.035762 | | |
tuncation = 5 | 0.169807 | 0.000000 | 0.000000 | 0.000005
tuncation = 3 | 0.054737 | 0.000452 | 0.000002 | 0.024378
DIPimage | 0.044099 | 0.000452 | 0.000002 | 0.024378
As you can see, using these two properties of the Gaussian we can reduce time from 5.0 s to 0.17 s, a 30x speedup, with hardly noticeable differences (truncating at 5*sigma). A further 3x speedup can be gained by allowing a small error. The smallest the truncation value, the faster this will go, but the larger the error will be.
I added that last method, the gaussianblob function from DIPimage (I'm an author), just to show that option in case you need to squeeze that bit of extra time from your code. That function is implemented in C++. This version that I used you will need to compile yourself. Our current official release implements this function still in M-file code, and is not as fast.
Further chance of improvement is if the fractional part of the coordinates is always the same (w.r.t. the pixel grid). In this case, you can draw the Gaussian once, and shift it over to each of the centroids.
Another alternative involves computing the Gaussian once, at a somewhat larger scale, and interpolating into it to generate each of the 1D Gaussians needed to generate the output. I did not implement this, I have no idea if it will be faster or if the time difference will be significant. In the old days, exp was expensive, I'm not sure this is still the case.
So, I am building off of the answer above me #Durkee. I enjoy these kinds of problems, so I thought a little about how to make each of the expansions implicit, and I have the one-line function below. Using this function I shaved .11 seconds off of the call, which is completely negligible. It looks like yours is pretty decent. The only advantage of mine might be how the code scales on a finer mesh.
xLin = [-10:.1:10]';
tic
psi2 = sum(exp(-sqrt((permute(xLin-r0(:,1)',[3 1 4 2])).^2 ...
+ (permute(xLin-r0(:,2)',[1 3 4 2])).^2 ...
+ (permute(xLin-r0(:,3)',[3 4 1 2])).^2)),4);
toc
The relative run times on my computer were (all things kept the same):
Original - 1.234085
Other - 2.445375
Mine - 1.120701
So this is a bit of an unusual problem where on my computer the unvectorized code actually works better than the vectorized code, here is my script
clear
[X,Y,Z]=meshgrid(-10:.1:10);
Psi=0*X;
nGauss = 20; %Sample nGauss as you didn't specify
r0 = rand(nGauss,3); % Just make this up as it doesn't really matter in this case
% Your original code
tic
for index = 1:nGauss
Psi = Psi + Gauss3D(X,Y,Z,[r0(index,1),r0(index,2),r0(index,3)]);
end
toc
% Vectorize these functions so we can use implicit broadcasting
X1 = X(:);
Y1 = Y(:);
Z1 = Z(:);
tic
val = [X1 Y1 Z1];
% Change the dimensions so that r0 operates on the right elements
r0_temp = permute(r0,[3 2 1]);
% Perform the gaussian combination
out = sum(exp(-sqrt(sum((val-r0_temp).^2,2))),3);
toc
% Check to make sure both functions match
sum(abs(vec(Psi)-vec(out)))
function output=Gauss3D(X,Y,Z,r0)
output=exp(-sqrt((X-r0(1)).^2 + (Y-r0(2)).^2 + (Z-r0(3)).^2));
end
function out = vec(in)
out = in(:);
end
As you can see, this is probably about as vectorized as you can get. The whole function is done using broadcasting and vectorized operations which normally improve performance ten-one hundredfold. However, in this case, this is not what we see
Elapsed time is 1.876460 seconds.
Elapsed time is 2.909152 seconds.
This actually shows the unvectorized version as being faster.
There could be a few reasons for this of which I am by no means an expert.
MATLAB uses a JIT compiler now which means that for loops are no longer inefficient.
Your code is already reasonably vectorized, you are operating at 8 million elements at once
Unless nGauss is 1000 or something, you're not looping through that much, and at that point, vectorization means you will run out of memory
I could be hitting some memory threshold where I am using too much memory and that is making my code inefficient, I noticed that when I lowered the resolution on the meshgrid the vectorized version worked better
As an aside, I tested this on my GTX 1060 GPU with single precision(single precision is 10x faster than double precision on most GPUs)
Elapsed time is 0.087405 seconds.
Elapsed time is 0.241456 seconds.
Once again the unvectorized version is faster, sorry I couldn't help you out but it seems that your code is about as good as you are going to get unless you lower the tolerances on your meshgrid.

I'm timing a function that has a runtime of O(n^3) but my timing results do not show this, why is this happening?

numberOfTrials = 10;
numberOfSizes = 6;
sizesArray = zeros(numberOfSizes, 1);
randomMAveragesArray = zeros(numberOfSizes, 1);
for i=1:numberOfSizes
N = 2^i;
%x=rand(N,1);
randomMTimesArray = zeros(numberOfTrials, 1);
for j=1:numberOfTrials
tic;
for k=1:N^3
x = .323452345e-999 * .98989898989889e-953;
end
randomMTimesArray(j) = toc;
end
sizesArray(i) = N;
end
randomMPolyfit = polyfit(log10(sizesArray), log10(randomMAveragesArray), 1);
randomMSlope = randomMPolyfit(1);
That is my Matlab script. I was originally timing a NxN random matrix using '\' to solve. The runtime on this is O(n^3). But my slope for the log graph was always about 1.8.
My understanding from this is that the timing results are O(n^k) where k is the slope from the log/log graph. So therefore the slope I should get should be around 3.
The code I posted above I have made an arbitrary loop that is N^3 with a floating point operation to test if this works.
However with the for loop I'm getting a slope of 2.5.
Why is this?
Since the O() behavior is asymptotic, you sometimes cannot see the behavior for small values of N. For example, if I set numberOfSizes = 9 and discard the first 3 points for the polynomial fit, the slope is much closer to 3:
randomMPolyfit = polyfit(log10(sizesArray(4:end)), log10(randomMAveragesArray(4:end)), 1);
randomMSlope = randomMPolyfit(1)
randomMSlope =
2.91911869082081
If you plot the timing array this behavior is clearer.

How to accumulate submatrices without looping (subarray smoothing)?

In Matlab I need to accumulate overlapping diagonal blocks of a large matrix. The sample code is given below.
Since this piece of code needs to run several times, it consumes a lot of resources. The process is used in array signal processing for a so-called subarray smoothing or spatial smoothing. Is there any way to do this faster?
% some values for parameters
M = 1000; % size of array
m = 400; % size of subarray
n = M-m+1; % number of subarrays
R = randn(M)+1i*rand(M);
% main code
S = R(1:m,1:m);
for i = 2:n
S = S + R(i:m+i-1,i:m+i-1);
end
ATTEMPTS:
1) I tried the following alternative vectorized version, but unfortunately it became much slower!
[X,Y] = meshgrid(1:m);
inds1 = sub2ind([M,M],Y(:),X(:));
steps = (0:n-1)*(M+1);
inds = repmat(inds1,1,n) + repmat(steps,m^2,1);
RR = sum(R(inds),2);
S = reshape(RR,m,m);
2) I used Matlab coder to create a MEX file and it became much slower!
I've personally had to fasten up some portions of my code lately. Being not an expert at all, I would recommend trying the following:
1) Vectorize:
Getting rid of the for-loop
S = R(1:m,1:m);
for i = 2:n
S = S + R(i:m+i-1,i:m+i-1)
end
and replacing it for an alternative based on cumsum should be the way to go here.
Note: will try and work on this approach on a future Edit
2) Generating a MEX-file:
In some instances, you could simply fire up the Matlab Coder app (given that you have it in your current Matlab version).
This should generate a .mex file for you, that you can call as it was the function that you are trying to replace.
Regardless of your choice (1) or 2)), you should profile your current implementation with tic; my_function(); toc; for a fair number of function calls, and compare it with your current implementation:
my_time = zeros(1,10000);
for count = 1:10000
tic;
my_function();
my_time(count) = toc;
end
mean(my_time)