iphone - properties and instance variables - iphone

Suppose I have this code...
foo.h
#interface Foo : NSObject {
NSString *aString; // 1
}
#property (nonatomic, retain) NSString *aString;
foo.m
#synthesize aString = _aString;
....
- (void)dealloc {
[aString release];
[super dealloc];
}
My questions are:
do I really need to declare aString in "1"? (see code)
if I am synthesizing aString = _aString, I am already creating an instance
variable, right?
if I am retaining the property on foo.h (#property), why Xcode complains if I release aString in dealloc?
thanks.

You are mixing up the property and the backing variable. "aString" is the property, which you access via method call (e.g. [self aString]). "_aString" is the backing variable, which you access directly (e.g. _aString).
Taking your questions in order:
No. This is an unused variable because you told the compiler to use _aString as the variable. (You don't actually need to declare either one in the modern run-time.)
Yes, as indicated in my answer to the first question.
Because the compiler expects you to send a message to an object, and "aString" is undefined as written. Normally you would use [self aString] to access the object, but this is a special case: in -dealloc and in -initXYZ you don't use accessor methods because of potential side effects. Switch to [_aString release] and everything will work (unless you have ARC, in which case you don't release at all.

With your #synthesize, the instance variable (your "1") should be NSString* _aString.
The reason you use synthesize with a differently named variable is so that you always use self.aString to properly release the old object instead of accidentally overwriting the pointer by directly modifying aString.
Do you have ARC enabled? If so, that's why Xcode complains about releasing it.

To answer your questions in order:
No. There might some sort of "best-practice" reason that I'm missing, but #property will synthesize the instance variable as well.
When you declare aString = _aString, what that allows you to do is directly manipulate _aString without accessing the synthesized getter/setter (by calling _aString) or use the synthesized getter/setters (by calling self.aString).
You are likely releasing it somewhere else, someone else is over-releasing it, or you're using ARC. With NSStrings (and other simple objects that have deep copy method readily available), I find it best to use #property (copy), and _aString = [stringPassedToInit copy], so that you are the only one handling your string's retain count. If you're using ARC, you don't need to worry about retain/release in most instances.

No, you don't need to declare ivars any more (since iOS 3 I think). You can delete the entire { ... } part of your interface declaration and it won't make any difference.
It's complaining because your ivar is named _aString, not aString. You need to say
[_aString release]
instead.

Answers : -
do I really need to declare aString in "1"? (see code) - Now with iOS 4 onwards you won't need to declare.
if I am synthesizing aString = _aString, I am already creating an instance variable, right? - Yes
if I am retaining the property on foo.h (#property), why Xcode complains if I release aString in dealloc? - now you need to use this - self.aString = nil, this will take care.

My answers are:
NO
YES
Try [_string release] instead.

Related

"Copy" when using ARC

I know that when using ARC and you have an NSString property, you do #property(nonatomic, copy) just as you would MRC. But I'm wondering, after I converted my project to ARC, I still have this in my initializer method:
_someString = [someStringParameter copy]
Is this a bug? Or even with ARC, do I still need to explicitly say "copy" ? Or should I just do:
self.someString = someStringParameter
and all will be OK? Bit confused here...
You'd never use self.someString = anything in your initialiser. The dot notation is a method call. You shouldn't call methods on classes that aren't fully instantiated yet. Most demonstrable failure case: a subclass overrides setSomeString: — where is it in its init when that method is called?
ARC will handle proper retains and releases on instance variables but can't automatically do copies — e.g. there are __strong and __weak modifiers but no __copy. So you still need explicitly to copy when doing a direct instance variable assignment.
_someString = [someStringParameter copy];
Is this a bug?
No.
Or even with ARC, do I still need to explicitly say "copy" ?
Absolutely.
You're assigning the instance variable by copy and it's perfectly legit under ARC. As opposed to that, doing just:
_someString = someStringParamenter;
will cause ARC to automatically retain (not copy) it, resulting in something like
_someString = [someStringParameter retain];
This happens because under ARC variables have an implicit __strong identifier unless specified otherwise.
self.someString = someStringParameter
This is right, and both under ARC and MRC you'll get the object to be copied if you provided the copy attribute in the property declaration.
That said, it's still a bad idea to use accessor methods in initializers, since they may have unwanted side effects in case you have a custom implementation for them. Check out this answer on the subject: Should I refer to self.property in the init method with ARC?

Retaining an Assigned Instance Variable Property

I have a property that has (nonatomic, assign) as attributes.
In a method, I then am retaining that variable then releasing it a line after.
Static analyzer is giving warning that incorrect decrement of the reference count of object....
Can I not do this
#property (nonatomic, assign) Class *iVar;
[self.iVar retain];
[self.iVar removeFromSuperview];
[self insertSubview:self.iVar atIndex:self.iVar.index];
[self.iVar release];
Since the retain and release both happen in the same method, you might want to copy the property to a local variable and then work with that:
UIView *someView = self.interestingView;
[someView retain];
//...do some stuff...
[someView release];
That at least provides some protection in case the "some stuff" part happens to modify self.interestingView. And it'll probably satisfy the static analyzer, too.
In general, I would avoid retaining/releasing variables that back properties outside the accessors for those properties, except for a few well defined situations such as -dealloc. Similarly, avoid directly retaining/releasing the result of a property access, as in [self.foo retain]. If that property is changed before you get to the release, you end up with both a leak and, later, an over-release.
The trouble is that you're not working with a variable; you're working with the result of a property accessor. Each time you access the property, the static analyzer applies the normal memory management rules for an object returned from a method — namely, you shouldn't be releasing it. If you change it to use an actual local or instance variable, the warning will go away.
I just tested a similar example,
You will appease the static analyzer by not using property notation
[iVar retain];
[self.iVar removeFromSuperview];
[self insertSubview:self.iVar atIndex:self.iVar.index];
[iVar release];
Or you could use a temporary variable.

Require some understanding for Singleton Pattern

I am going to paste a code here and had a question regarding that which I wanted to understand merely, based on the logical way.
#interface MySingleton : NSObject {
NSString *enteredCode;
}
#property (nonatomic, retain) NSString *enteredCode;
#end
#synthesize enteredCode;
-(void) addInput:(NSString *) input
{
self.enteredCode = [self.enteredCode stringByAppendingString:input];
}
- (void)dealloc {
[enteredCode release];
}
#end
In my code, if I utilize "self.enteredCode = [self.enteredCode stringByAppendingString:input];"
everything works fine but "enteredCode = [self.enteredCode stringByAppendingString:input];" it gets exc_bad_access, and I am just wondering why this case be?
I am just trying to understand what difference really does it makes without having self there?
Thanks.
This is not to do with singletons. When you do self.enteredCode you are going through the property which is set to 'retain'. The stringByAppendingString method is a convenience method with returns an autoreleased object to you, meaning that it will be released at some point on the next run loop. You need to retain this value to stop it being released, which is fine when you assign it through the property as it is properly retained by you and you can use it as you like.
When you reference the variable directory (without the self.) you bypass this and as such you don't ever retain the value, the value is subsequently released and you reference bad memory and BOOOOOOOOM, bad access.
when you call self.enteredCode = XXX it will call [self setEnteredCode:XXX]. Since you are using a retain property this will release the old value of enteredCode, and retain the new value.
if you directly manipulate the enteredCode variable you will have memleaks and crashes because it will try to release something that is not retained later.
If I understand correctly, self.enteredCode works but enteredCode fails.
If that's the case then I believe it's because you're bypassing the property and setting the iVar directly. That means you're assigned an auto released object and bypassing the retain mechanism.
Consider using something like _enteredCode for your iVars do it's clearer in your code when you're bypassing properties.

Syntax for accessing instance variables? (Objective-C)

What is the proper syntax for accessing an instance variable in Objective-C?
Assume we have this variable:
#interface thisInterface : UIViewController {
NSMutableString *aString;
}
#property (nonatomic, retain) NSMutableString *aString;
and that it is synthesized.
When we want to access it, we first would want to allocate and initialize it. Having programmed in Objective-C for about a month now, I've seen two different forms of syntax. I've seen people do simply aString = [[NSMutableString alloc] initWithString:#"hi"], where they allocate the string like that; I've also seen people start it off with self.aString and then they proceed to initialize their ivar. I guess I'm just trying to figure out what is the most proper way of initializing an instance variable, because with the former example, I have received EXC_BAD_ACCESS errors from it. After prepending the self. though, it didn't appear.
Forgive me if this is a duplicate question, but after reading some posts on SO, it's made me curious. I'm trying to learn the proper syntax with Objective-C because I prefer being proper rather than sloppy.
If you have declared a property and #synthesize it in the .m file, you simply set it like this:
self.aString = #"hi"; // or [[NSMutableString alloc] initWithString:#"hi"];
Using self.varName takes advantage of what your property declaration actually does- it handles retention of the new value (since your property has the retain attribute), releasing the old value, etc for you.
If you just do:
aString = someValue;
... you may be leaking the original value that was in aString, since without using self.aString you are accessing the variable directly vs through the property.
Note the difference between self->varName and self.varName
The first is pointer access. The second is property access.
Why is that important? Pointer access is direct. Property access, on the other hand makes use of getters and setters (be they #synthesized or not). Moreover, as a convenience, the #synthesized accessors take care of the memory mangement for you (i.e. when using self.varName = ...;), whereas varName = ...; does only what it says, i.e. the assignment -> (there lies the explanation for EXC_BAD_ACCESS errors you might be getting).
Syntactically, both forms are correct. If you want to better communicate intent, use self->varName when you want to work directly with the pointer and use self.varName when you want to take advantage of the #property convenience.
Here are all the possible combinations (I think)
OKs and BADs are only correct when aString property has retain attribute:
#property (nonatomic, retain) NSMutableString *aString;
So:
1
aString = [[NSMutableString alloc] init]; //OK:
This is OK but only in the case aString is not pointing to an invalid object or you will loose a reference to that object and it will leak because you won't be able to reach it to release it.
2
aString = [NSMutableString string]; //BAD
Bad because you are suppose to retain aString (as you declared it that way), you are not retaining it and you will get surely get EXC_BAD_ACCESS in the future
3
aString = [[NSMutableString string] retain]; //OK
Same as the first approach, only good if aString is not pointing to a valid object. However I will use the first though.
4
aString = [[[NSMutableString alloc] init] autorelease];//BAD
Same as the second approach.
5
self.aString = [[NSMutableString alloc] init]; //BAD!!
Bad because you are retaining it twice, hence it will lead to memory leaks
6
self.aString = [[NSMutableString string]; //******GOOD!******
This is probably the safest. It will be retained by the property setter and since you are using the setter any other object that could have been pointed by aString will be released appropriately
7
self.aString = [[NSMutableString string] retain]; //BAD
This is retained twice.
8
self.aString = [[[NSMutableString alloc] init] autorelease];//Ok
This is also OK, but I would use the convenience method instead of this long approach :)
Be wary that the #1 and #3 options are perfectly good if you know what you are doing. In fact I use them much more frequently than #6
I personally prefer to use the self. syntax. It just makes it easier to determine that its an instance variable, and not just some other variable in the current scope that will be lost when its NSAutoreleasePool is drained. However, it is correct to use them both ways, and if you are receiving EXC_BAD_ACCESS errors, it is not because you accessed it without using self.. You are correct in saying that you must alloc it, and whichever way you choose to access your variables, keep it consistent or you will receive errors.
I hope this helps.
Always use accessors except in init, dealloc and in accessors themselves. Doing this will save you a lot of headaches like the one you're describing. Also, name your ivars something different than your property (_foo, foo_, mFoo, but not foo).
self.foo is precisely the same as [self foo]. I calls the method foo. self.foo = x is precisely the same a [self setFoo:x]. It calls the method setFoo:. If you synthesized the property foo as a retain variable, then this looks something like:
#synthesize foo = foo_;
- (void)setFoo:(id)value {
[value retain];
[foo_ release];
foo_ = value;
}
This correctly releases the old value of foo_, assigns a new one and retains it.
foo = x (assuming foo is an ivar) does not call any method. None. It just assigns the value of the pointer in x to the pointer in foo. If foo pointed to something that was retained, it's leaked. If the new value you're assigning isn't retained, you'll crash later.
The solution to this is to always use accessors when you can.
Either.
Using the dot syntax is cleaner (to some) and it compiles to the equivalent. i.e self.iVar is the same as [self iVar] and self.iVar = aValue is the same as [self setIVar:aValue];
self.aString is a syntactic sugar to [self aString]. Synthesize a property just create the -aString and -setAString: method (depending on the property you have chosen it while not be the trivial affectation).
Now the question is whether to use the . notation. I suggest you not to use it.
Why? First know that Objective-C aim to be just an addition to C. This mean that every valid C code is also a valid Objective-C code.
Now look at what they have done with the dot notation. The last statement does not hold anymore. You wont distinguish between an access to a field of a C structure and sending objective-c method.
So please don't use the dot notation. Prefer using the [self ..].

iOS Singletons and Memory Management

I'm certain that I'm missing some fundamental understanding of iOS memory management and, despite lots of reading and searching, I'm still not getting it.
I use a singleton in my app that has info about the user currently signed into it, info accessed from multiple view controllers, etc. It has multiple ivars that are get and set throughout the app. They're declared and propertied in the .h file like so:
NSString *myString;
and are made retained like so:
#property (non atomic, retain) NSString *myString;
and synththesized in the implementation.
I get and set their values in methods in the singleton like this:
myString = #"value";
and
methodLocalString = myString;
In other places I include the singleton -- call it CurrentUser -- I import it:
#import "CurrentUser.h"
Outside of the singleton I get and set it like this:
[CurrentUser sharedCurrentUser].myString = #"Bob";
and
myOutsideString = [CurrentUser sharedCurrentUser].myString;
Most of the time this works great, with the values appropriately persisted from one getting or setting to another. The trouble is that sometimes when I get them that way I find that they've been released (crashing the app), which NSZombieEnabled thankfully tells me.
What I don't get is how his can happen. I thought the singleton was never released, and that therefor retained properties of the singleton would never be released. I'll note that the problem seems to be more common with non-real-object properties like NSDate and definitely-not-object properties like int and BOOL which can't be retained, but it happens with object properties as well.
What am I ignorant about here? And thanks for your patience.
Your problem is:
I get and set their values in methods
in the singleton like this:
myString = #"value";
When you assign directly to the iVar, instead of using the property syntax (self.myString = #"value"), you are bypassing the synthesized setter method, which means that the retain never happens.
Properties aren't magic. They're just a bit of syntactic sugar for the "." access, and the ability to have synthesized getter/setter methods to save you the tedium of writing your own.
self.myString = #"value";
is just shorthand for
[self setMyString:#"value"];
The synthesized setMyString method will do something like:
if (myString != newValue) {
[myString release];
myString = [newValue retain];
}
(assuming retain option on the #synthesize)
Don't use singletons. Your current problem is caused by a simple memory management misconception, but the singleton pattern will only give you more headache in the long run.