Why is tail recursive Collatz conjecture causing stack overflow in Scheme? - lisp

I've written Collatz conjecture in Scheme:
(define C
(lambda (n)
(cond
((eq? n 1) 1)
((even? n) (C (/ n 2)))
(else (C (+ (* n 3) 1))))))
This is a tail recursive call, yet I get stack overflow when I call (C 121):
guile> (trace C)
(C)
guile> (C 121)
[C 121]
[C 364]
[C 182]
[C 91]
[C 274]
[C 137]
[C 412]
[C 206]
[C 103]
[C 310]
[C 155]
[C 466]
[C 233]
[C 700]
[C 350]
[C 175]
[C 526]
[C 263]
[C 790]
[C 395]
[C 1186]
ERROR: Stack overflow
ABORT: (stack-overflow)
Why is proper tail recursion causing an overflow? As you can see, I'm using Guile as a Scheme interpreter (version 1.8.7).

The procedure as defined works fine in Racket. It seems like a bug to me, or something very specific to your environment.
Almost certainly not related to your problem, but a bit of nit-picking: use the comparison (= n 1) for numbers instead of (eq? n 1).

(define C
(lambda (n)
(cond
((eq? n 1) 1)
((even? n) (C (/ n 2)))
(else (C (+ (* n 3) 1))))))
This looks like it always returns 1 (or loops infinitely -- the conjecture remains unproven). Is there a transcription error hiding a (+1 ...) around the recursive calls?

Related

For loop which prints out every 3rd number

I'm trying to make a for loop that iterates over a list of numbers and prints out every 3rd number.
Edit: I've only figured out how to use the for loop but I'm not entirely sure if there's a specific function I can use to only show every 3rd number. I feel like I might be on the right path when using car/cdr function except I'm getting an error
rest: contract violation
expected: (and/c list? (not/c empty?))
given: 0
My code:
(for/list ([x (in-range 20)] #:when (car(cdr(cdr x)))) (displayln x))
I'm trying to make a for loop that iterates over a list of numbers and prints out every 3rd number.
Typically it is more useful to create a new list with the desired values, and then print those values, or pass them to a function, or do whatever else may be needed. for/list does indeed return a list, and this is one reason for problems encountered by OP example code. (Other problems in OP code include that x is a number with [x (in-range 20)], so (cdr x) is not defined).
A possible solution would be to recurse over the input list, using take to grab the next three values, keeping the third, and using drop to reduce the input list:
;; Recurse using `take` and `drop`:
(define (every-3rd-1 lst)
(if (< (length lst) 3)
'()
(cons (third (take lst 3))
(every-3rd-1 (drop lst 3)))))
Another option would be to recurse on the input list using an auxiliary counter; starting from 1, only keep the values from the input list when the counter is a multiple of 3:
;; Recurse using an auxilliary counter:
(define (every-3rd-2 lst)
(define (every-3rd-helper lst counter)
(cond [(null? lst)
'()]
[(zero? (remainder counter 3))
(cons (first lst) (every-3rd-helper (rest lst) (add1 counter)))]
[else (every-3rd-helper (rest lst) (add1 counter))]))
(every-3rd-helper lst 1))
Yet another possibility would be to use for/list to build a list; here i is bound to values from the input list, and counter is bound to values from a list of counting numbers:
;; Use `for/list` to build a list:
(define (every-3rd-3 lst)
(for/list ([i lst]
[counter (range 1 (add1 (length lst)))]
#:when (zero? (remainder counter 3)))
i))
This function (or any of them, for that matter) could be usefully generalized to keep every nth element:
;; Generalize to `every-nth`:
(define (every-nth n lst)
(for/list ([i lst]
[counter (range 1 (add1 (length lst)))]
#:when (zero? (remainder counter n)))
i))
Finally, map could be used to create a list containing every nth element by mapping over a range of every nth index into the list:
;; Use `map` and `range`:
(define (every-nth-map n lst)
(map (lambda (x) (list-ref lst x)) (range (sub1 n) (length lst) n)))
If what OP really requires is simply to print every third value, rather than to create a list of every third value, perhaps the code above can provide useful materials allowing OP to come to a satisfactory conclusion. But, each of these functions can be used to print results as OP desires, as well:
scratch.rkt> (for ([x (every-3rd-1 '(a b c d e f g h i j k l m n o p))])
(displayln x))
c
f
i
l
o
scratch.rkt> (for ([x (every-3rd-2 '(a b c d e f g h i j k l m n o p))])
(displayln x))
c
f
i
l
o
scratch.rkt> (for ([x (every-3rd-3 '(a b c d e f g h i j k l m n o p))])
(displayln x))
c
f
i
l
o
scratch.rkt> (for ([x (every-nth 3 '(a b c d e f g h i j k l m n o p))])
(displayln x))
c
f
i
l
o
scratch.rkt> (for ([x (every-nth-map 3 '(a b c d e f g h i j k l m n o p))])
(displayln x))
c
f
i
l
o
Here is a template:
(for ([x (in-list xs)]
[i (in-naturals]
#:when some-condition-involving-i)
(displayln x))

Can anyone help me with a recursive function in racket?

I am writing a recursive function. But the question requires you not to use the exponential function. Can anyone show me how to get larger powers by multiplying smaller powers by a?
Input a=2 n=4. Then get[2, 4, 8, 16]
Input a=3 n=4. Then get[3 9 27 81].
I was trying to multiply a by a each time, so when I input 2 and 4. I get [2 4 16 256]. So what should I do?
Here is what I have written:
(define (input a n)
(if (= n 0)
'()
(append (cdr (list [* a a] a))
(let ((a (* a a)))
(input a (- n 1))))))
You are approaching the problem wrong, you really need two recursive functions (one to build the list and one to build each element). I am assuming you are allowed to use local, but if you aren't you could move that into a helper function.
(define (build-sqr-list a n)
(local [(define (sqr-recurse a n)
(if (= n 0)
1
(* a (sqr-recurse a (sub1 n)))))]
(if (= n 0)
'()
(cons (sqr-recurse a n) (build-sqr-list a (sub1 n))))))

Errors in Racket for SICP Exercise 1.11

The interpreter for Racket gives me errors
in my attempt to implement the recursive
function for Exercise 1.11:
#lang sicp
(define (f n)
(cond ((< n 3) n)
(else (+ f((- n 1))
(* 2 f((- n 2)))
(* 3 f((- n 3)))))))
(f 2)
(f 5)
The errors given by the Racket intrepreter are:
2
application: not a procedure;
expected a procedure that can be applied to arguments
given: 4
arguments...: [none]
context...:
/Users/tanveersalim/Desktop/Git/EPI/EPI/Functional/SICP/chapter_1/exercise_1-11.rkt: [running body]
As others noted, you're calling f incorrectly
Change f((- n 1)) (and other similar instances) to (f (- n 1))
(define (f n)
(cond ((< n 3) n)
(else (+ (f (- n 1))
(* 2 (f (- n 2)))
(* 3 (f (- n 3)))))))
(f 2) ; 2
(f 5) ; 25

"application: not a procedure" while computing binomial

I am defining a function binomial(n k) (aka Pascal's triangle) but am getting an error:
application: not a procedure;
expected a procedure that can be applied to arguments
given: 1
arguments...:
2
I don't understand the error because I thought this defined my function:
(define (binomial n k)
(cond ((or (= n 0) (= n k)) 1)
(else (+ (binomial(n) (- k 1))(binomial(- n 1) (- k 1))))))
In Scheme (and Lisps in general), parentheses are placed before a procedure application and after the final argument to the procedure. You've done this correctly in, e.g.,
(= n 0)
(= n k)
(- k 1)
(binomial(- n 1) (- k 1))
However, you've got an error in one of your arguments to one of your calls to binomial:
(define (binomial n k)
(cond ((or (= n 0) (= n k)) 1)
(else (+ (binomial(n) (- k 1))(binomial(- n 1) (- k 1))))))
***
Based on the syntax described above (n) is an application where n should evaluate to a procedure, and that procedure will be called with no arguments. Of course, n here actually evaluates to an integer, which is not a procedure, and can't be called (hence “application: not a procedure”). You probably want to remove the parentheses around n:
(binomial n (- k 1))
It's also worth pointing out that Dr. Racket should have highlighted the same portion of code that I did above. When I load your code and evaluate (binomial 2 1), I get the following results in which (n) is highlighted:
Your error is here:
binomial(n)
n is an integer, not a function. If you put parentheses around it like that, scheme tries to invoke an integer as a function, which naturally produces an error.
This is the correct code:
(define (binomial n k)
(cond ((or (= n 0) (= n k)) 1)
(else (+ (binomial n (- k 1))(binomial(- n 1) (- k 1))))))
Problem is at here:
(binomial (n) (- k 1))

How would I express this Scheme function more clearly?

(define (repeated f n)
if (= n 0)
f
((compose repeated f) (lambda (x) (- n 1))))
I wrote this function, but how would I express this more clearly, using simple recursion with repeated?
I'm sorry, I forgot to define my compose function.
(define (compose f g) (lambda (x) (f (g x))))
And the function takes as inputs a procedure that computes f and a positive integer n and returns the procedure that computes the nth repeated application of f.
I'm assuming that (repeated f 3) should return a function g(x)=f(f(f(x))). If that's not what you want, please clarify. Anyways, that definition of repeated can be written as follows:
(define (repeated f n)
(lambda (x)
(if (= n 0)
x
((repeated f (- n 1)) (f x)))))
(define (square x)
(* x x))
(define y (repeated square 3))
(y 2) ; returns 256, which is (square (square (square 2)))
(define (repeated f n)
(lambda (x)
(let recur ((x x) (n n))
(if (= n 0)
args
(recur (f x) (sub1 n))))))
Write the function the way you normally would, except that the arguments are passed in two stages. It might be even clearer to define repeated this way:
(define repeated (lambda (f n) (lambda (x)
(define (recur x n)
(if (= n 0)
x
(recur (f x) (sub1 n))))
(recur x n))))
You don't have to use a 'let-loop' this way, and the lambdas make it obvious that you expect your arguments in two stages.
(Note:recur is not built in to Scheme as it is in Clojure, I just like the name)
> (define foonly (repeat sub1 10))
> (foonly 11)
1
> (foonly 9)
-1
The cool functional feature you want here is currying, not composition. Here's the Haskell with implicit currying:
repeated _ 0 x = x
repeated f n x = repeated f (pred n) (f x)
I hope this isn't a homework problem.
What is your function trying to do, just out of curiosity? Is it to run f, n times? If so, you can do this.
(define (repeated f n)
(for-each (lambda (i) (f)) (iota n)))