The interpreter for Racket gives me errors
in my attempt to implement the recursive
function for Exercise 1.11:
#lang sicp
(define (f n)
(cond ((< n 3) n)
(else (+ f((- n 1))
(* 2 f((- n 2)))
(* 3 f((- n 3)))))))
(f 2)
(f 5)
The errors given by the Racket intrepreter are:
2
application: not a procedure;
expected a procedure that can be applied to arguments
given: 4
arguments...: [none]
context...:
/Users/tanveersalim/Desktop/Git/EPI/EPI/Functional/SICP/chapter_1/exercise_1-11.rkt: [running body]
As others noted, you're calling f incorrectly
Change f((- n 1)) (and other similar instances) to (f (- n 1))
(define (f n)
(cond ((< n 3) n)
(else (+ (f (- n 1))
(* 2 (f (- n 2)))
(* 3 (f (- n 3)))))))
(f 2) ; 2
(f 5) ; 25
Related
I am trying to write a racket program that computes the sum of the first n terms in a fibonacci sequence without using recursion, and only using abstract list functions (so map, builld-list, foldr, foldl). I can use helper functions.
I'm stuck on how to make a list of the fibonacci numbers without using recursion. I thought I could use a lambda function:
(lambda (lst) (+ (list-ref lst (- (length lst) 1)) (list-ref lst (- (length lst 2)))))
But I am not sure how to generate the input list/how to add this to a function.
Once I have a fibonacci sequence I know I can just use (foldl + (car lst) (cdr lst)) to find the sum.
Could anyone explain to me how to make the fibonacci sequence/give me a hint?
; This is how I figure out
#|
(1 2 3 4 (0 1))
-> (1 2 3 (1 1))
-> (1 2 (1 2))
-> (1 (2 3))
-> (3 5)
|#
(define (fib n)
(cond
[(= n 0) 0]
[(= n 1) 1]
[(> n 1)
(second
(foldr (λ (no-use ls) (list (second ls) (+ (first ls) (second ls))))
'(0 1)
(build-list (- n 1) (λ (x) x))))]))
(fib 10)
(build-list 10 fib)
Upgrade version 2
(define (fib-v2 n)
(first
(foldr (λ (no-use ls) (list (second ls) (+ (first ls) (second ls))))
'(0 1)
(build-list n (λ (x) x)))))
(build-list 10 fib-v2)
fib-seq produces a list of first n fibonacci numbers and fib-sum produces the sum of first n fibonacci numbers.
; Number -> [List-of Number]
(define (fib-seq n)
(cond [(= n 0) '()]
[(= n 1) '(0)]
[else (reverse
(for/fold ([lon '(1 0)]) ([_ (in-range (- n 2))])
(cons (apply + (take lon 2)) lon)))]))
; Number -> Number
(define (fib-sum n)
(if (= n 0) 0 (add1 (apply + (take (fib-seq n) (sub1 n))))))
Note: fib-sum is equivalent to the following recursive versions:
(define (fib0 n)
(if (< n 2) n (+ (fib0 (- n 1)) (fib0 (- n 2)))))
(define (fib1 n)
(let loop ((cnt 0) (a 0) (b 1))
(if (= n cnt) a (loop (+ cnt 1) b (+ a b)))))
(define (fib2 n (a 0) (b 1))
(if (= n 0) 0 (if (< n 2) 1 (+ a (fib2 (- n 1) b (+ a b))))))
Once I have a fibonacci sequence I know I can just use (foldl + (car lst) (cdr lst)) to find the sum.
Note that you don't have to generate an intermediate sequence to find the sum. Consider the (fast) matrix exponentiation solution:
(require math/matrix)
(define (fib3 n)
(matrix-ref (matrix-expt (matrix ([1 1] [1 0])) n) 1 0))
Testing:
(require rackunit)
(check-true
(let* ([l (build-list 20 identity)]
[fl (list fib0 fib1 fib2 fib3 fib-sum)]
[ll (make-list (length fl) l)])
(andmap (λ (x) (equal? (map fib0 l) x))
(map (λ (x y) (map x y)) fl ll))))
This is Trying code
(defun f (a n)
(if (zerop n)
1
(* a (f a (- n 1)))))
(f 3) should return 27, (f 4) should return 256
I tried using two variables, but it be against the rules.
Is it possible to use only one variable using recursive?
Thanks for any ideas
I don't know CL, but I do know Clojure and other languages that use recursion.
In cases where a recursive function has 1 parameter acting as an accumulator, but is only set on the first call, the typical way around this is to wrap f in another function. There are 2 (basically the same) ways of doing this:
(defun g (a n)
(if (zerop n)
1
(* a (g a (- n 1)))))
(defun f (n)
; I'm assuming you want the initial value of "a" to be 1
(g 1 n))
Or, more succinctly:
(defun f (n)
(let (g (fn (n)
(if (zerop n)
1
(* a (g a (- n 1))))))))
; Instead of f being recursive, f calls g, which is recursive
(g 1 n))
Excuse any syntax errors.
Using an additional variable to count down would be the sane choice, but you don't need to change the contract of just one numeric argument input just for this. You can make a helper to do that:
(defun exptnn (n)
"Get the (expt n n)"
(check-type n integer)
(labels ((helper (acc count)
(if (zerop count)
acc
(helper (* acc n) (1- count)))))
(if (< n 0)
(/ 1 (helper 1 (- n)))
(helper 1 n))))
Now to solve with without any helpers just with one argument is possible since there is a solution doing that already, but I must say that is like programming in Brainf*ck without the joy!
CL-USER 15 > (defun f (n)
(labels ((g (m)
(if (zerop m)
1
(* n (g (1- m))))))
(g n)))
F
CL-USER 16 > (f 0)
1
CL-USER 17 > (f 1)
1
CL-USER 18 > (f 2)
4
CL-USER 19 > (f 3)
27
CL-USER 20 > (f 4)
256
CL-USER 21 > (loop for i below 10 collect (f i))
(1 1 4 27 256 3125 46656 823543 16777216 387420489)
This is a solution where no functions with more than one parameter are used (except for =, +, *, logand, ash; note also that logand and ash always take a constant as second parameter so they can be implemented as unary functions too).
The idea is to "hide" the two parameters needed for the obvious recursive approach in a single integer using odd/even bits.
(defun pair (n)
(if (= n 0)
0
(+ (* 3 (logand n 1))
(ash (pair (ash n -1)) 2))))
(defun pair-first (p)
(if (= p 0)
0
(+ (logand p 1)
(ash (pair-first (ash p -2)) 1))))
(defun pair-second (p)
(pair-first (ash p -1)))
(defun subsec (p)
(if (= 2 (logand p 2))
(- p 2)
(+ (logand p 1) 2 (ash (subsec (ash p -2)) 2))))
(defun pairpow (p)
(if (= (pair-second p) 1)
(pair-first p)
(* (pair-first p)
(pairpow (subsec p)))))
(defun f (n)
(pairpow (pair n)))
No reasonable real use, of course; but a funny exercise indeed.
Yes, this is possible:
(defun f (n)
(cond
((numberp n)
(f (cons n n)))
((zerop (car n))
1)
(t
(* (cdr n)
(f (cons (1- (car n))
(cdr n)))))))
The trick is that you can store any data structure (including a pair of numbers) in a single variable.
Alternatively, you can use helpers from the standard library:
(defun f (n)
(apply #'*
(loop repeat n collect n)))
But that doesn't use recursion. Or simply:
(defun f (n)
(expt n n))
For class, I have to write a function that takes positive integer n and returns the sum of n’s odd digits in scheme. So far, I have my base case such that if n equals 0 then 0. But I am not sure on how to continue.
(define sumOddDigits
(lambda (n)
(if (= n 0)
0
Test cases:
(sumOddDigits 0) → 0
(sumOddDigits 4) → 0
(sumOddDigits 3) → 3
(sumOddDigits 1984) → 10
You could do it efficiently using one functional loop:
(define (sumOddDigits n)
(let loop ([n n])
(cond [(zero? n) 0]
[else
(let-values ([(q r) (quotient/remainder n 10)])
(+ (if (odd? r) r 0)
(loop q)))])))
One can get list of digits using following function which uses 'named let':
(define (getDigits n)
(let loop ((ol '()) ; start with an empty outlist
(n n))
(let-values (((q r) (quotient/remainder n 10)))
(if (= q 0) (cons r ol)
(loop (cons r ol) q)))))
Then one can apply a filter using odd? function to get all odd elements of list- and then apply 'apply' function with '+' to add all those elements:
(apply + (filter
(lambda(x)
(odd? x))
digitList))
Together following can be the full function:
(define (addOddDigits N)
(define (getDigits n)
(let loop ((ol '())
(n n))
(let-values (((q r) (quotient/remainder n 10)))
(if (= q 0) (cons r ol)
(loop (cons r ol) q)))))
(define digitList (getDigits N))
(println digitList)
(apply + (filter
(lambda(x)
(odd? x))
digitList)))
Testing:
(addOddDigits 156)
Output:
'(1 5 6)
6
Your basecase is if n < 10. Because you are then on the last digit.
You then need to check if it's odd, and if so return it. Else, return the addition qualifier(0).
If n > 10, you remainder off the first digit, then test it for odd.
If odd, then add it to a recursive call, sending in the quotient of 10(shaves off the digit you just added).
Else, you recursively call add-odds with the quotient of 10, without adding the current digit.
Here it is in a recursive form(Scheme LOVES recursion) :
(define add-odds
(lambda (n)
(if(< n 10)
(if(= (remainder n 2) 1)
n
0)
(if(= (remainder (remainder n 10) 2) 1)
(+ (remainder n 10) (add-odds (quotient n 10)))
(add-odds(quotient n 10))))))
First get a (reversed) list of digits with simple recursive implementation:
(define (list-digits n)
(if (zero? n) '()
(let-values ([(q r) (quotient/remainder n 10)])
(cons r (list-digits q)))))
then filter the odd ones and sum them:
(define (sum-of-odd-digits n)
(apply + (filter odd? (list-digits n))))
Note: (list-digits 0) returns '() but it is ok for later usage.
More accurate list-digits iterative implementation (produce list of digits in right order):
(define (list-digits n)
(define (iter n acc)
(if (zero? n) acc
(let-values ([(q r) (quotient/remainder n 10)])
(iter q (cons r acc)))))
(iter n '()))
How would I formulate the following operation in racket?
(n^2 + 300) (13/n)?
I got the first part done-
(define (f n)
( + ( * n n ) 300))
So If I type in (f 2) I would get 304.
But How do I add the second part of this equation (13/n)?
If you want to just use direct multiplication, this works:
(define (f n)
(* (+ (* n n) 300) (/ 13 n)))
If all you are going to do is square a number, then you could also do:
(define (f n)
(* (+ (sqr n) 300) (/ 13 n)))
And finally, if you needed to raise n to some power, then you could also do:
(define (f n)
(* (+ (expt n 2) 300) (/ 13 n)))
This is straightforward:
(define (f n)
(* (+ (* n n) 300) (/ 13 n)))
(define (repeated f n)
if (= n 0)
f
((compose repeated f) (lambda (x) (- n 1))))
I wrote this function, but how would I express this more clearly, using simple recursion with repeated?
I'm sorry, I forgot to define my compose function.
(define (compose f g) (lambda (x) (f (g x))))
And the function takes as inputs a procedure that computes f and a positive integer n and returns the procedure that computes the nth repeated application of f.
I'm assuming that (repeated f 3) should return a function g(x)=f(f(f(x))). If that's not what you want, please clarify. Anyways, that definition of repeated can be written as follows:
(define (repeated f n)
(lambda (x)
(if (= n 0)
x
((repeated f (- n 1)) (f x)))))
(define (square x)
(* x x))
(define y (repeated square 3))
(y 2) ; returns 256, which is (square (square (square 2)))
(define (repeated f n)
(lambda (x)
(let recur ((x x) (n n))
(if (= n 0)
args
(recur (f x) (sub1 n))))))
Write the function the way you normally would, except that the arguments are passed in two stages. It might be even clearer to define repeated this way:
(define repeated (lambda (f n) (lambda (x)
(define (recur x n)
(if (= n 0)
x
(recur (f x) (sub1 n))))
(recur x n))))
You don't have to use a 'let-loop' this way, and the lambdas make it obvious that you expect your arguments in two stages.
(Note:recur is not built in to Scheme as it is in Clojure, I just like the name)
> (define foonly (repeat sub1 10))
> (foonly 11)
1
> (foonly 9)
-1
The cool functional feature you want here is currying, not composition. Here's the Haskell with implicit currying:
repeated _ 0 x = x
repeated f n x = repeated f (pred n) (f x)
I hope this isn't a homework problem.
What is your function trying to do, just out of curiosity? Is it to run f, n times? If so, you can do this.
(define (repeated f n)
(for-each (lambda (i) (f)) (iota n)))