Ok so the more and more I develop in Mongodb i start to wonder about the need for multiple collections vs having one large collection with indexes (since columns and fields can be different for each document unlike tabular data). If i am trying to develop in the most efficient way possible (meaning less code and reusable code) then can I use one collection for all documents and just index on a field. By having all documents in one collection with indexes then i can reuse all my form processing code and other code since it will all be inserting into the same collection.
For Example:
Lets say i am developing a contact manager and I have two types of contacts "individuals" and "businesses". My original thought was to create a collection called individuals and a second collection called businesses. But that was because im used to developing in sql where yes this would be appropriate since columns would be different for each table. The more i started to think about the flexibility of document dbs the more I started to think, "do I really need two collections for this?" If i just add a field to each document called "contact type" and index on that, do i really need two collections? Since the fields/columns in each document do not have to be the same for all (like in sql) then each document can have their own fields as long as i have a "document type" field and an index on that field.
So then i took that concept and started to think, if i only need one collection for "individuals" and "businesses" then do i even need a separate collection for "Users" or "Contact History" or any other data. In theory couldn't i build the entire solution in once collection and just have a field in each document that specifield the "type" and index on it such as "Users", "Individual Contact", "Business Contacts", "Contact History", etc, and if it is a document related to another document i can index on the "parent key/foreign" Id field...
This would allow me to code the front end dynamically since the form processing code would all be the same (inserting into the same collection). This would save a lot of coding but i want to make sure by using indexes and secondary indexes that the db would still run fast and not cause future problems as the collection grew. As you can imagine, if everything was in one collection there might be hundreds of thousands even millions of documents in this collection as the user base grows but it would have indexes and secondary indexes to optimize performance.
My question is: Is this a common method mongodb developers use? Why or why not? What are the downfalls, if any? If this is a commonly used method, please also give any positives to using this method. thank you.
This is a really big point in Mongo and the answer is a little bit more of an art than science. Having one collection full of gigantic documents is definitely an anti-pattern because it works against many of Mongo's features.
For instance, when retrieving documents, you can only retrieve a whole document out of a collection (not entirely true, but mostly). So if you have huge documents, you're retrieving huge documents each time. Also, having huge documents makes sharding less flexible since only the top level documents are indexed (and hence, sharded) in each collection. You can index values deep into a document, but the index value is associated with the top level document.
At the same time, going purely relational is also an anti-pattern because you've lost a lot of the referential integrity by going to Mongo in the first place. Also, all joins are done in application memory, so each one requires a full round-trip (slow).
So the answer is to do something in between. I'm thinking you'll probably want a collection for individuals and a different collection for businesses in this case. I say this because it seem like businesses have enough meta-data associated that it could bulk up a lot. (Also, I individual-business relationship seems like a many-to-many). However, an individual might have a Name object (with first and last properties). That would be a bad idea to make Name into a separate collection.
Some info from 10gen about schema design: http://www.mongodb.org/display/DOCS/Schema+Design
EDIT
Also, Mongo has limited support for transactions - in the form of atomic aggregates. When you insert an object into mongo, the entire object is either inserted or not inserted. So you're application domain requires consistency between certain objects, you probably want to keep them in the same document/collection.
For example, consider an application that requires that a User always has a Name object (containing FirstName, LastName, and MiddleInitial). If a User was somehow inserted with no corresponding Name, the data would be considered to be corrupted. In an RDBMS you would wrap a transaction around the operations to insert User and Name. In Mongo, we make sure Name is in the same document (aggregate) as User to achieve the same effect.
Your example is a little less clear, since I don't understand the business cases. One thing that does come to mind is that Mongo has excellent support for inheritance. It might make sense to put all users, individuals, and potentially businesses into the same collection (depending on how the application is modeled). If one individual has many contacts, you probably want individuals to have an array of IDs. If your application requires that you get a quick preview of contacts, you might consider duplicating part of an individual and storing an array of contact objects.
If you're used to RDBMS thinking, you probably think all your data always has to be consistent. The truth is, that's probably not entirely true. This concept of applying atomic aggregates to the domain has been preached heavily by the DDD community recently. When you look at your domain in depth, like your business users do, the consistency boundaries should become distinct.
MongoDB, and NoSQL in general, is about de-normalising data and about reducing joins. It goes against normal SQL thinking.
In your case, I don't see any reason why you would want to have separate collections because it introduces unnecessary complexity and performance overhead. Consider, for example, if you wanted to have a screen that displayed all contacts, in alphabetical order. If you have one single collection for contacts, then its really easy, but if you have two collections it becomes a more complicated proposition.
Where I would have multiple collections is if your application had multiple users storing contacts. I would then have one collection for each user. This makes it so easy to extract out that users contacts.
Im looking to use MongoDB for my database implementation. Why would you want to embded a document insode a document?
It is one way to do what in a relational database you would do with a JOIN (something that you cannot do in MongoDB).
For example, you could have a MongoDB document as a blog post, and embed the list of comments right in there.
Then you can (for example):
load post and comments in a single query
search for posts which have replies
search for posts by user A which have replies by user B
atomically update both post and comments in a single transaction
All that would be impossible (or at least difficult) if the comments were stored in their own collection as separate documents.
In simple terms, embed if its NOT a top level object, if it does NOT have complex relationships, if there will be a lot of duplicate data if you do NOT embed, and if your documents become bigger then a few megabytes.
Taken from the MongoDB site: http://www.mongodb.org/display/DOCS/Schema+Design
Summary of Best Practices
Embed "First class" objects, that are at top level, typically have their own collection.
Line item detail objects typically are embedded.
Objects which follow an object modelling "contains" relationship should generally be embedded.
Many to many relationships are generally done by linking.
Collections with only a few objects may safely exist as separate collections, as the whole collection is quickly cached in application server memory.
Embedded objects are a bit harder to link to than "top level" objects in collections.
It is more difficult to get a system-level view for embedded objects. When needed an operation of this sort is performed by using MongoDB's map/reduce facility.
If the amount of data to embed is huge (many megabytes), you may reach the limit on size of a single object. See also GridFS.
If performance is an issue, embed.
I'd like to code a web app where most of the sections are dependent on the user profile (for example different to-do lists per person etc) and I'd love to use MongoDB. I was thinking of creating about 10 embedabble documents for the main profile document and keep everything related to one user inside his own document.
I don't see a clear way of using foreign keys for mongodb, the only way would be to create a field to_do_id with the type of ObjectId for example, but they would be totally unrelated internally, just happen to have the same Ids I'd have to query for.
Is there a limit on the number of embedded document types inside a top level document that could degrade performance?
How do you guys solve the issue of having a central profile document that most of the documents have to relate to in presenting a view per person?
Do you use semi foreign keys inside MongoDb and have fields with ObjectId types that would have some other document's unique Id instead of embedding them?
I cannot feel what approach should be taken when. Thank you very much!
There is no special limit with respect to performance. The larger the document, though, the longer it takes to transmit over the wire. The whole document is always retrieved.
I do it with references. You can choose between simple manual references and the database DBRef as per this page: http://www.mongodb.org/display/DOCS/Database+References
The link above documents how to have references in a document in a semi-foreign key way. The DBRef might be good for what you are trying to do, but the simple manual reference is very efficient.
I am not sure a general rule of thumb exists for which reference approach is best. Since I use Java or Groovy mostly, I like the fact that I get a DBRef object returned. I can check for this datatype and use that to decide how to handle the reference in a generic way.
So I tend to use a simple manual reference for references to different documents in the same collection, and a DBRef for references across collections.
I hope that helps.
I'm slightly embarrassed to admit it, but I'm having trouble conceptualizing how to architect data in a non-relational world. Especially given that most document/KV stores have slightly different features.
I'd like to learn from a concrete example, but I haven't been able to find anyone discussing how you would architect, for example, a blog using CouchDB/Redis/MongoDB/Riak/etc.
There are a number of questions which I think are important:
Which bits of data should be denormalised (e.g. tags probably live with the document, but what about users)
How do you link between documents?
What's the best way to create aggregate views, especially ones which require sorting (such as a blog index)
First of all I think you would want to remove redis from the list as it is a key-value store instead of a document store. Riak is also a key-value store, but you it can be a document store with library like Ripple.
In brief, to model an application with document store is to figure out:
What data you would store in its own document and have another document relate to it. If that document is going to be used by many other documents, then it would make sense to model it in its own document. You also must consider about querying the documents. If you are going to query it often, it might be a good idea to store it in its own document as you would find it hard to query over embedded document.
For example, assuming you have multiple Blog instance, a Blog and Article should be in its own document eventhough an Article may be embedded inside Blog document.
Another example is User and Role. It makes make sense to have a separate document for these. In my case I often query over user and it would be easier if it is separated as its own document.
What data you would want to store (embed) inside another document. If that document only solely belongs to one document, then it 'might' be a good option to store it inside another document.
Comments sometimes would make more sense to be embedded inside another document
{ article : { comments : [{ content: 'yada yada', timestamp: '20/11/2010' }] } }
Another caveat you would want to consider is how big the size of the embedded document will be because in mongodb, the maximum size of embedded document is 5MB.
What data should be a plain Array. e.g:
Tags would make sense to be stored as an array. { article: { tags: ['news','bar'] } }
Or if you want to store multiple ids, i.e User with multiple roles { user: { role_ids: [1,2,3]}}
This is a brief overview about modelling with document store. Good luck.
Deciding which objects should be independent and which should be embedded as part of other objects is mostly a matter of balancing read/write performance/effort - If a child object is independent, updating it means changing only one document but when reading the parent object you have only ids and need additional queries to get the data. If the child object is embedded, all the data is right there when you read the parent document, but making a change requires finding all the documents that use that object.
Linking between documents isn't much different from SQL - you store an ID which is used to find the appropriate record. The key difference is that instead of filtering the child table to find records by parent id, you have a list of child ids in the parent document. For many-many relationships you would have a list of ids on both sides rather than a table in the middle.
Query capabilities vary a lot between platforms so there isn't a clear answer for how to approach this. However as a general rule you will usually be setting up views/indexes when the document is written rather than just storing the document and running ad-hoc queries later as you would with SQL.
Ryan Bates made a screencast a couple of weeks ago about mongoid and he uses the example of a blog application: http://railscasts.com/episodes/238-mongoid this might be a good place for you to get started.
I'm interested in document-oriented databases, and I'd like to play with MongoDB. So I started a fairly simple project (an issue tracker), but am having hard times thinking in a non-relational way.
My problems:
I have two objects that relate to each other (e.g. issue = {code:"asdf-11", title:"asdf", reporter:{username:"qwer", role:"manager"}} - here I have a user related to the issue). Should I create another document 'user' and reference it in 'issue' document by its id (like in relational databases), or should I leave all the user's data in the subdocument?
If I have objects (subdocuments) in a document, can I update them all in a single query?
I'm totally new to document-oriented databases, and right now I'm trying to develop sort of a CMS using node.js and mongodb so I'm facing the same problems as you.
By trial and error I found this rule of thumb: I make a collection for every entity that may be a "subject" for my queries, while embedding the rest inside other objects.
For example, comments in a blog entry can be embedded, because usually they're bound to the entry itself and I can't think about a useful query made globally on all comments. On the other side, tags attached to a post might deserve their own collection, because even if they're bound to the post, you might want to reason globally about all the tags (for example making a list of trending topics).
In my mind this is actually pretty simple. Embedded documents can only be accessed via their master document. If you can envision a need to query an object outside the context of the master document, then don't embed it. Use a ref.
For your example
issue = {code:"asdf-11", title:"asdf", reporter:{username:"qwer", role:"manager"}}
I would make issue and reporter each their own document, and reference the reporter in the issue. You could also reference a list of issues in reporter. This way you won't duplicate reporters in issues, you can query them each separately, you can query reporter by issue, and you can query issues by reporter. If you embed reporter in issue, you can only query the one way, reporter by issue.
If you embed documents, you can update them all in a single query, but you have to repeat the update in each master document. This is another good reason to use reference documents.
The beauty of mongodb and other "NoSQL" product is that there isn't any schema to design. I use MongoDB and I love it, not having to write SQL queries and awful JOIN queries! So to answer your two questions.
1 - If you create multiple documents, you'll need make two calls to the DB. Not saying it's a bad thing but if you can throw everything into one document, why not? I recall when I used to use MySQL, I would create a "blog" table and a "comments" table. Now, I append the comments to the record in the same collection (aka table) and keep building on it.
2 - Yes ...
The schema design in Document-oriented DBs can seems difficult at first, but building my startup with Symfony2 and MongoDB I've found that the 80% of the time is just like with a relational DB.
At first, think it like a normal db:
To start, just create your schema as you would with a relational Db:
Each Entity should have his own Collection, especially if you'll need to paginate the documents in it.
(in Mongo you can somewhat paginate nested document arrays, but the capabilities are limited)
Then just remove overly complicated normalization:
do I need a separate category table? (simply write the category in a column/property as a string or embedded doc)
Can I store comments count directly as an Int in the Author collection? (then update the count with an event, for example in Doctrine ODM)
Embedded documents:
Use embedded documents only for:
clearness (nested documents like: addressInfo, billingInfo in the User collection)
to store tags/categories ( eg: [ name: "Sport", parent: "Hobby", page: "/sport"
] )
to store simple multiple values (for eg. in User collection: list of specialties, list of personal websites)
Don't use them when:
the parent Document will grow too large
when you need to paginate them
when you feel the entity is important enough to deserve his own collection
Duplicate values across collection and precompute counts:
Duplicate some columns/attributes values from a Collection to another if you need to do a query with each values in the where conditions. (remember there aren't joins)
eg: In the Ticket collection put also the author name (not only the ID)
Also if you need a counter (number of tickets opened by user, by category, ecc), precompute them.
Embed references:
When you have a One-to-Many or Many-to-Many reference, use an embedded array with the list of the referenced document ids (see MongoDB DB Ref).
You'll need to use an Event again to remove an id if the referenced document get deleted.
(There is an extension for Doctrine ODM if you use it: Reference Integrity)
This kind of references are directly managed by Doctrine ODM: Reference Many
Its easy to fix errors:
If you find late that you have made a mistake in the schema design, its quite simply to fix it with few lines of Javascript to run directly in the Mongo console.
(stored procedures made easy: no need of complex migration scripts)
Waring: don't use Doctrine ODM Migrations, you'll regret that later.
Redid this answer since the original answer took the relation the wrong way round due to reading incorrectly.
issue = {code:"asdf-11", title:"asdf", reporter:{username:"qwer", role:"manager"}}
As to whether embedding some important information about the user (creator) of the ticket is a wise decision or not depends upon the system specifics.
Are you giving these users the ability to login and report issues they find? If so then it is likely you might want to factor that relation off to a user collection.
On the other hand, if that is not the case then you could easily get away with this schema. The one problem I see here is if you wish to contact the reporter and their job role has changed, that's somewhat awkward; however, that is a real world dilemma, not one for the database.
Since the subdocument represents a single one-to-one relation to a reporter you also should not suffer fragmentation problems mentioned in my original answer.
There is one glaring problem with this schema and that is duplication of changing repeating data (Normalised Form stuff).
Let's take an example. Imagine you hit the real world dilemma I spoke about earlier and a user called Nigel wants his role to reflect his new job position from now on. This means you have to update all rows where Nigel is the reporter and change his role to that new position. This can be a lengthy and resource consuming query for MongoDB.
To contradict myself again, if you were to only have maybe 100 tickets (aka something manageable) per user then the update operation would likely not be too bad and would, in fact, by manageable for the database quite easily; plus due to the lack of movement (hopefully) of the documents this would be a completely in place update.
So whether this should be embedded or not depends heavily upn your querying and documents etc, however, I would say this schema isn't a good idea; specifically due to the duplication of changing data across many root documents. Technically, yes, you could get away with it but I would not try.
I would instead split the two out.
If I have objects (subdocuments) in a document, can I update them all in a single query?
Just like the relation style in my original answer, yes and easily.
For example, let's update the role of Nigel to MD (as hinted earlier) and change the ticket status to completed:
db.tickets.update({'reporter.username':'Nigel'},{$set:{'reporter.role':'MD', status: 'completed'}})
So a single document schema does make CRUD easier in this case.
One thing to note, stemming from your English, you cannot use the positional operator to update all subdocuments under a root document. Instead it will update only the first found.
Again hopefully that makes sense and I haven't left anything out. HTH
Original Answer
here I have a user related to the issue). Should I create another document 'user' and reference it in 'issue' document by its id (like in relational databases), or should I leave all the user's data in the subdocument?
This is a considerable question and requires some background knowledge before continuing.
First thing to consider is the size of a issue:
issue = {code:"asdf-11", title:"asdf", reporter:{username:"qwer", role:"manager"}}
Is not very big, and since you no longer need the reporter information (that would be on the root document) it could be smaller, however, issues are never that simple. If you take a look at the MongoDB JIRA for example: https://jira.mongodb.org/browse/SERVER-9548 (as a random page that proves my point) the contents of a "ticket" can actually be quite considerable.
The only way you would gain a true benefit from embedding the tickets would be if you could store ALL user information in a single 16 MB block of contigious sotrage which is the maximum size of a BSON document (as imposed by the mongod currently).
I don't think you would be able to store all tickets under a single user.
Even if you was to shrink the ticket to, maybe, a code, title and a description you could still suffer from the "swiss cheese" problem caused by regular updates and changes to documents in MongoDB, as ever this: http://www.10gen.com/presentations/storage-engine-internals is a good reference for what I mean.
You would typically witness this problem as users add multiple tickets to their root user document. The tickets themselves will change as well but maybe not in a drastic or frequent manner.
You can, of course, remedy this problem a bit by using power of 2 sizes allocation: http://docs.mongodb.org/manual/reference/command/collMod/#usePowerOf2Sizes which will do exactly what it says on the tin.
Ok, hypothetically, if you were to only have code and title then yes, you could store the tickets as subdocuments in the root user without too many problems, however, this is something that comes down to specifics that the bounty assignee has not mentioned.
If I have objects (subdocuments) in a document, can I update them all in a single query?
Yes, quite easily. This is one thing that becomes easier with embedding. You could use a query like:
db.users.update({user_id:uid,'tickets.code':'asdf-1'}, {$set:{'tickets.$.title':'Oh NOES'}})
However, to note, you can only update ONE subdocument at a time using the positional operator. As such this means you cannot, in a single atomic operation, update all ticket dates on a single user to 5 days in the future.
As for adding a new ticket, that is quite simple:
db.users.update({user_id:uid},{$push:{tickets:{code:asdf-1,title:"Whoop"}}})
So yes, you can quite simply, depending on your queries, update the entire users data in a single call.
That was quite a long answer so hopefully I haven't missed anything out, hope it helps.
I like MongoDB, but I have to say that I will use it a lot more soberly in my next project.
Specifically, I have not had as much luck with the Embedded Document facility as people promise.
Embedded Document seems to be useful for Composition (see UML Composition), but not for aggregation. Leaf nodes are great, anything in the middle of your object graph should not be an embedded document. It will make searching and validating your data more of a struggle than you'd want.
One thing that is absolutely better in MongoDB is your many-to-X relationships. You can do a many-to-many with only two tables, and it's possible to represent a many-to-one relationship on either table. That is, you can either put 1 key in N rows, or N keys in 1 row, or both. Notably, queries to accomplish set operations (intersection, union, disjoint set, etc) are actually comprehensible by your coworkers. I have never been satisfied with these queries in SQL. I often have to settle for "two other people will understand this".
If you've ever had your data get really big, you know that inserts and updates can be constrained by how much the indexes cost. You need fewer indexes in MongoDB; an index on A-B-C can be used to query for A, A & B, or A & B & C (but not B, C, B & C or A & C). Plus the ability to invert a relationship lets you move some indexes to secondary tables. My data hasn't gotten big enough to try, but I'm hoping that will help.