I want to create only the collections structure.
i.e.
Say Products collection contains a list of Categories.
I want to specify this container structure by creating this dependencies, but I do not want to create any collection entry (say there is a loader program somewhere that bulk uploads the data).
The closet analogy in RDBMS is; DBA creates the schema design with constraints and dependencies; application or ETL tool loads the actual data.
Most of the examples that I see simply create a sample collection and then invoke the
db.insert(document)
OR
db.save(document)
Is it even possible in MongoDB?
if the question is not clear, please let me know.
Thanks
The short answer is NO.
You cannot create a schema in MongoDB. A collection is just a set of documents. Furthermore, dependencies are likely to be represented with embedded documents (as opposed to referenced documents).
We can be more specific if you post the data you want to represent.
Related
I'm trying to build an ionic application which retrieves data from Cloudant using pouchdb. Cloudant allows creating only databases and documents.
How can I create some collections in Cloudant?
Two part answer:
A set of documents that meet certain criteria can be considered a collection in Cloudant/CouchDB. You can create views to fetch those documents. Such a view might check for the existence of a property in a document ("all documents with a property named type"), the value of a property ("all documents with a property named type having the value of book") or any other condition that makes sense for your application and return the appropriate documents.
You basically have to follow a three step process:
determine how you can identify documents in your database that you consider to be part of the collection
create a view based on your findings in the previous step
query the view to retrieve those documents
Above documentation link provides more details.
Properties in your document can represent collections as well, as in the following example, which defines a simple array of strings.
{
"mycollectionname": [
"element1",
"element2",
...
]
}
How you implement collections really depends on your use-case scenario.
Long post, but hope that helps.
I would like to explain this with a RDBMS analogy.
In any RDBMS, a new database would mean a different connection with different set of credentials.
A collection would mean the set of tables in that particular database.
A record would mean a row in a table.
Similarly, you can look at a single Cloudant service instance as a database(RDBMS terminology).
A collection would be a "database" in that service instance in Cloudant's terminology.
A document would correpond to a single row.
Hence, Cloudant has no concept of collection as such. If you need to store your related documents in a separate collection you must do it with multiple databases within the same service instance.
If you want to use only a single database, you could create a field like "record_index" to differentiate between the different documents. While querying these documents, you could use an index. For. e.g. I have a student database. But I do not want to store the records for Arts, Commerce, Science branches in different databases. I will add a field "record_type": "arts", etc. in the records. Create an index,
{ selector: {record_type: "arts"}}
Before doing any operation on the arts records, you can use this index and query the documents. In this way, you will be able to logically group your documents.
I am trying to come up with a rough design for an application we're working on. What I'd like to know is, if there is a way to directly map a one to many relation in mongo.
My schema is like this:
There are a bunch of Devices.
Each device is known by it's name/ID uniquely.
Each device, can have multiple interfaces.
These interfaces can be added by a user in the front end at any given
time.
An interface is known uniquely by it's ID, and can be associated with
only one Device.
A device can contain at least an order of 100 interfaces.
I was going through MongoDB documentation wherein they mention things relating to Embedded document vs. multiple collections. By no means am I having a detailed clarity over this as I've just started with Mongo and meteor.
Question is, what could seemingly be a better approach? Having multiple small collections or having one big embedded collection. I know this question is somewhat subjective, I just need some clarity from folks who have more expertise in this field.
Another question is, suppose I go with the embedded model, is there a way to update only a part of the document (specific to the interface alone) so that as and when itf is added, it can be inserted into the same device document?
It depends on the purpose of the application.
Big document
A good example on where you'd want a big embedded collection would be if you are not going to modify (normally) the data but you're going to query them a lot. In my application I use this for storing pre-processed trips with all the information. Therefore when someone wants to consult this trip, all the information is located in a single document. However if your query is based on a value that is embedded in a trip, inside a list this would be very slow. If that's the case I'd recommend creating another collection with a relation between both collections. Also for updating part of a document it would be slow since it would require you to fetch the whole document and then update it.
Small documents with relations
If you plan on modify the data a lot, I'd recommend you to stick to a reference to another collection. With small documents, this will allow you to update any collection quicker. If you want to model a unique relation you may consider using a unique index in mongo. This can be done using: db.members.createIndex( { "user_id": 1 }, { unique: true } ).
Therefore:
Big object: Great for querying data but slow for complex queries.
Small related collections: Great for updating but requires several queries on distinct collections.
I'd like to code a web app where most of the sections are dependent on the user profile (for example different to-do lists per person etc) and I'd love to use MongoDB. I was thinking of creating about 10 embedabble documents for the main profile document and keep everything related to one user inside his own document.
I don't see a clear way of using foreign keys for mongodb, the only way would be to create a field to_do_id with the type of ObjectId for example, but they would be totally unrelated internally, just happen to have the same Ids I'd have to query for.
Is there a limit on the number of embedded document types inside a top level document that could degrade performance?
How do you guys solve the issue of having a central profile document that most of the documents have to relate to in presenting a view per person?
Do you use semi foreign keys inside MongoDb and have fields with ObjectId types that would have some other document's unique Id instead of embedding them?
I cannot feel what approach should be taken when. Thank you very much!
There is no special limit with respect to performance. The larger the document, though, the longer it takes to transmit over the wire. The whole document is always retrieved.
I do it with references. You can choose between simple manual references and the database DBRef as per this page: http://www.mongodb.org/display/DOCS/Database+References
The link above documents how to have references in a document in a semi-foreign key way. The DBRef might be good for what you are trying to do, but the simple manual reference is very efficient.
I am not sure a general rule of thumb exists for which reference approach is best. Since I use Java or Groovy mostly, I like the fact that I get a DBRef object returned. I can check for this datatype and use that to decide how to handle the reference in a generic way.
So I tend to use a simple manual reference for references to different documents in the same collection, and a DBRef for references across collections.
I hope that helps.
I'm slightly embarrassed to admit it, but I'm having trouble conceptualizing how to architect data in a non-relational world. Especially given that most document/KV stores have slightly different features.
I'd like to learn from a concrete example, but I haven't been able to find anyone discussing how you would architect, for example, a blog using CouchDB/Redis/MongoDB/Riak/etc.
There are a number of questions which I think are important:
Which bits of data should be denormalised (e.g. tags probably live with the document, but what about users)
How do you link between documents?
What's the best way to create aggregate views, especially ones which require sorting (such as a blog index)
First of all I think you would want to remove redis from the list as it is a key-value store instead of a document store. Riak is also a key-value store, but you it can be a document store with library like Ripple.
In brief, to model an application with document store is to figure out:
What data you would store in its own document and have another document relate to it. If that document is going to be used by many other documents, then it would make sense to model it in its own document. You also must consider about querying the documents. If you are going to query it often, it might be a good idea to store it in its own document as you would find it hard to query over embedded document.
For example, assuming you have multiple Blog instance, a Blog and Article should be in its own document eventhough an Article may be embedded inside Blog document.
Another example is User and Role. It makes make sense to have a separate document for these. In my case I often query over user and it would be easier if it is separated as its own document.
What data you would want to store (embed) inside another document. If that document only solely belongs to one document, then it 'might' be a good option to store it inside another document.
Comments sometimes would make more sense to be embedded inside another document
{ article : { comments : [{ content: 'yada yada', timestamp: '20/11/2010' }] } }
Another caveat you would want to consider is how big the size of the embedded document will be because in mongodb, the maximum size of embedded document is 5MB.
What data should be a plain Array. e.g:
Tags would make sense to be stored as an array. { article: { tags: ['news','bar'] } }
Or if you want to store multiple ids, i.e User with multiple roles { user: { role_ids: [1,2,3]}}
This is a brief overview about modelling with document store. Good luck.
Deciding which objects should be independent and which should be embedded as part of other objects is mostly a matter of balancing read/write performance/effort - If a child object is independent, updating it means changing only one document but when reading the parent object you have only ids and need additional queries to get the data. If the child object is embedded, all the data is right there when you read the parent document, but making a change requires finding all the documents that use that object.
Linking between documents isn't much different from SQL - you store an ID which is used to find the appropriate record. The key difference is that instead of filtering the child table to find records by parent id, you have a list of child ids in the parent document. For many-many relationships you would have a list of ids on both sides rather than a table in the middle.
Query capabilities vary a lot between platforms so there isn't a clear answer for how to approach this. However as a general rule you will usually be setting up views/indexes when the document is written rather than just storing the document and running ad-hoc queries later as you would with SQL.
Ryan Bates made a screencast a couple of weeks ago about mongoid and he uses the example of a blog application: http://railscasts.com/episodes/238-mongoid this might be a good place for you to get started.
I've never came across an app/class like Zend Search Lucene before, as I've always queried my database.
Zend_Search_Lucene operates with
documents as atomic objects for
indexing. A document is divided into
named fields, and fields have content
that can be searched.
A document is represented by the
Zend_Search_Lucene_Document class, and
this objects of this class contain
instances of Zend_Search_Lucene_Field
that represent the fields on the
document.
It is important to note that any
information can be added to the index.
Application-specific information or
metadata can be stored in the document
fields, and later retrieved with the
document during search.
So this is basically saying that I can apply this to anything including databases, the key thing here is making indexes for searching.
What I'm trying to grasp is where exactly should I store the indexes in my application, let's take for example we have phones stored in a database, a manufacturers, models - how should I categorize the indexes?
If I'm making indexes of users with say, addresses I obviously wouldn't want them to be publically viewable, I'm just confused on how it all works out together, if there are known disadvantages, any gotchas I should know while using it.
A Lucene index is stored outside the database. I'd store it in a "data" directory as a sister to your controllers, models, and views. But you can store it anywhere; you just need to specify the path when you open the index for querying.
It's basically a redundant copy of the documents stored in your database, and you have to keep them in sync yourself. That's one of the disadvantages: you have to write code to populate the Lucene index based on results of a query against your database. As you add data to the database, you have to update your Lucene index as well.
An advantage of using an external full-text index solution is that you can reduce the workload on your RDBMS. To find a document, you execute a search using the Lucene API. The result should include a field containing the primary key value (as part of the document but no need to make it analyzed for FT search). You get this field back when you do a Lucene search, so you can look up the respective row in the database.
Does that help answer your question?
I gave a presentation recently for MySQL University comparing full-text search solutions:
http://forge.mysql.com/wiki/Practical_Full-Text_Search_in_MySQL
I also publish my slides at http://www.SlideShare.net/billkarwin.