Memcached with high cmd_set but rather low get_misses? - memcached

We are running a memcached cluster of 4 nodes, stats of each node are roughly the same, we have the following stats from one of the nodes:
total_items=116476019
curr_items=207738
get_hits=14055065
cmd_get=14283874
get_misses=228809
cmd_set=116531135
cache hits:98.40%
We are caching our data for 1 hour, so you can see curr_items is rather low cause many of the items expired, this is fine. Well the strange thing is that the cmd_set is over 500 times the get_misses, which I couldn't understand. To my understanding, most of the time, a miss will cause a cmd_set.
What could be the possible cause of this problem?

Related

Locust eats CPU after 2-3 hours running

I have a simple HTTP server that I was testing. This server interacts with other HTTP servers and Cassandra DB.
Currently I was using 100 users with 1 request/s, so totally 100 tps was on the server. What I noticed with the Docker stats was that the CPU usage became higher and higher and ~ 2-3 hours later the CPU usage reaches the 90% mark, and even more. After that I got a notice from Locust, stating that the measurement may be inconsistent. But the latencies were not increased, so I do not know why this has been happening.
Can you please suggest possible cause(s) of the problem? I think 100 tps should be handled by one vCPU.
Thanks,
AM
There's no way for us to know exactly what's wrong without at very least seeing some code, and even then other factors like the environment or data or server you're running it on or against could have additional factors we wouldn't know about.
It's possible you have a problem with your code for your Locust users, such as a memory leak or they're just doing too much for a single worker to handle that many users. For users only doing simple HTTP calls, a single CPU typically can handle upwards of thousands of requests per second. Do anything more than that and you'll start to expect to reduce what a worker can handle. It's also possible you may just need a more powerful CPU (or more RAM or bandwidth) to do what you want it to do at the scale you want.
Do some profiling to see if you can find any inefficiencies in your code. Run smaller tests to see if the same behavior is evident with smaller loads. Run the same load but with additional Locust workers on other CPUs.
It's also just as possible your DB can't handle the load. The increasing CPU usage could be due to how your code is handling waiting on the connection from the DB. Perhaps the DB could sustain, say, 80 users at an acceptable rate but any additional users makes it fall further and further behind and your Locust users are then waiting longer and longer for the requested data.
For more suggestions, check out the Locust FAQ https://github.com/locustio/locust/wiki/FAQ#increase-my-request-raterps

CPU Utilization while using locust

We are planning to use locust for performance testing. I have started locust in distributed mode on Kubernetes, with 800 Users for a duration of 5 minutes. Hatch rate is 100 as well. After a couple of minutes, I can see the below warning on the worker log.
[2020-07-15 07:03:15,990] pipeline1-locust-worker-1-gp824/WARNING/root: Loadgen CPU usage above 90%! This may constrain your throughput and may even give inconsistent response time measurements!
I am unable to figure what is 90% here since I have not specified any resource limits. Is it the 90% of node capacity? Which is unlikely since we use beefy nodes, 16Vcpus, and 128Gb memory. Can anyone give any insight?
It is 90% of one core (which is all a single locust process can utilize because of the python GIL) (measured using https://psutil.readthedocs.io/en/latest/#psutil.Process.cpu_percent)
If you have 16vcpu you need 16 processes to utilize the whole node.
I guess we should clarify the message.

determine ideal number of workers and EC2 sizing for master

I have a requirement to use locust to simulate 20,000 (and higher) users in a 10 minute test window.
the locustfile is a tasksquence of 9 API calls. I am trying to determine the ideal number of workers, and how many workers should be attached to an EC2 on AWS. My testing shows with 20 workers, on two EC2 instance, the CPU load is minimal. the master however suffers big time. a 4 CPU 16 GB RAM system as the master ends up thrashing to the point that the workers start printing messages like this:
[2020-06-12 19:10:37,312] ip-172-31-10-171.us-east-2.compute.internal/INFO/locust.util.exception_handler: Retry failed after 3 times.
[2020-06-12 19:10:37,312] ip-172-31-10-171.us-east-2.compute.internal/ERROR/locust.runners: RPCError found when sending heartbeat: ZMQ sent failure
[2020-06-12 19:10:37,312] ip-172-31-10-171.us-east-2.compute.internal/INFO/locust.runners: Reset connection to master
the master seems memory exhausted as each locust master process has grown to 12GB virtual RAM. ok - so the EC2 has a problem. But if I need to test 20,000 users, is there a machine big enough on the planet to handle this? or do i need to take a different approach and if so, what is the recommended direction?
In my specific case, one of the steps is to download a file from CloudFront which is randomly selected in one of the tasks. This means the more open connections to cloudFront trying to download a file, the more congested the available network becomes.
Because the app client is actually a native app on a mobile and there are a lot of factors affecting the download speed for each mobile, I decided to to switch from a GET request to a HEAD request. this allows me to test the response time from CloudFront, where the distribution is protected by a Lambda#Edge function which authenticates the user using data from earlier in the test.
Doing this dramatically improved the load test results and doesn't artificially skew the other testing happening as with bandwidth or system resource exhaustion, every other test will be negatively impacted.
Using this approach I successfully executed a 10,000 user test in a ten minute run-time. I used 4 EC2 T2.xlarge instances with 4 workers per T2. The 9 tasks in test plan resulted in almost 750,000 URL calls.
The answer for the question in the title is: "It depends"
Your post is a little confusing. You say you have 10 master processes? Why?
This problem is most likely not related to the master at all, as it does not care about the size of the downloads (which seems to be the only difference between your test case and most other locust tests)
There are some general tips that might help:
Switch to FastHttpUser (https://docs.locust.io/en/stable/increase-performance.html)
Monitor your network usage (if your load gens are already maxing out their bandwidth or CPU then your test is very unrealistic anyway, and adding more users just adds to the noice. In general, start low and work your way up)
Increase the number of loadgens
In general, the number of users is not an issue for locust, but number of requests per second or bandwidth might be.

How to scale max.incremental.fetch.session.cache.slots

I'm running a somewhat large Kafka cluster, but currently I'm stuck at properly setting max.incremental.fetch.session.cache.slots and would need some guidance. The documentation about this is not clear either: https://cwiki.apache.org/confluence/display/KAFKA/KIP-227%3A+Introduce+Incremental+FetchRequests+to+Increase+Partition+Scalability
By scale i mean: 3 nodes, ~400 Topics, 4500 Partitions, 300 consumergroups, 500 consumers
For a while now, I'm seeing the FETCH_SESSION_ID_NOT_FOUND errors appearing in the logs and wanted to address them.
So I've tried increasing the value in the config, restarted all brokers and the pool quickly filled up again to it's max capacity. This reduced the occurrence of the errors, but they are not completely gone. At first I've set to value to 2000, it was instantly full. Then in several steps up to 100.000. And the pool was filled in ~40 Minutes.
From the documentation I was expecting the pool to cap out after 2 Minutes when min.incremental.fetch.session.eviction.ms kicks in. But this seems not to be the case.
What would be the metrics to gauge the appropriate size of the cache. Are the errors I'm still seeing anything I can fix on the brokers or do I need to hunt down misconfigured consumers? If so, what do I need to look out for?
Such a high usage of Fetch Sessions is most likely caused by a bad client.
Sarama, a Golang client, had an issue that caused a new Fetch Session to be allocated on every Fetch request between versions 1.26.0 and 1.26.2, see https://github.com/Shopify/sarama/pull/1644.
I'd recommend checking if you have users running this client and ensure they update to the latest release.

Azure Service Fabric reliable collections and memory

Let's say I'm running a Service Fabric cluster on 5 D1 class (1 core, 3.5GB RAM, 50GB SSD) VMs. and that I'm running 2 reliable services on this cluster, one stateless and one stateful. Let's assume that the replica target is 3.
How to calculate how much can my reliable collections hold?
Let's say I add one or more stateful services. Since I don't really know how the framework distributes services do I need to take most conservative approach and assume that a node may run all of my stateful services on a single node and that their cumulative memory needs to be below the RAM available on a single machine?
TLDR - Estimating the expected capacity of a cluster is part art, part science. You can likely get a good lower bound which you may be able to push higher, but for the most part deploying things, running them, and collecting data under your workload's conditions is the best way to answer this question.
1) In general, the collections on a given machine are bounded by the amount of available memory or the amount of available disk space on a node, whichever is lower. Today we keep all data in the collections in memory and also persist it to disk. So the maximum amount that your collections across the cluster can hold is generally (Amount of available memory in the cluster) / (Target Replica Set Size).
Note that "Available Memory" is whatever is left over from other code running on the machines, including the OS. In your above example though you're not running across all of the nodes - you'll only be able to get 3 of them. So, (unrealistically) assuming 0 overhead from these other factors, you could expect to be able to put about 3.5 GB of data into that stateful service replica before you ran out of memory on the nodes on which it was running. There would still be 2 nodes in the cluster left empty.
Let's take another example. Let's say that it is about the same as your example above, except in this case you set up the stateful service to be partitioned. Let's say you picked a partition count of 5. So now on each node, you have a primary replica and 2 secondary replicas from other partitions. In this case, each partition would only be able to hold a maximum of around 1.16 GB of state, but now overall you can pack 5.83 GB of state into the cluster (since all nodes can now be utilized fully). Incidentally, just to prove out the math works, that's (3.5 GB of memory per node * 5 nodes in the cluster) [17.5] / (target replica set size of 3) = 5.83.
In all of these examples, we've also assumed that memory consumption for all partitions and all replicas is the same. A lot of the time that turns out to not be true (at least temporarily) - some partitions can end up with more or less work to do and hence have uneven resource consumption. We also assumed that the secondaries were always the same as the primaries. In the case of the amount of state, it's probably fair to assume that these will track fairly evenly, though for other resource consumption it may not (just something to keep in mind). In the case of uneven consumption, this is really where the rest of Service Fabric's Cluster Resource Management will help, since we can come to know about the consumption of different replicas and pack them efficiently into the cluster to make use of the available space. Automatic reporting of consumption of resources related to state in the collections is on our radar and something we want to do, so in the future, this would be automatic but today you'd have to report this consumption on your own.
2) By default, we will balance the services according to the default metrics (more about metrics is here). So by default, the different replicas of those two different services could end up on the machine, but in your example, you'll end up with 4 nodes with 1 replica from a service on it and then 1 node with two replicas from the two different services. This means that each service (each with 1 partition as per your example) would only be able to consume 1.75 GB of memory in each service for a total of 3.5 GB in the cluster. This is again less than the total available memory of the cluster since there are some portions of nodes that you're not utilizing.
Note that this is the maximum possible consumption, and presuming no consumption outside the service itself. Taking this as your maximum is not advisable. You'll want to reduce it for several reasons, but the most practical reason is to ensure that in the presence of upgrades and failures that there's sufficient available capacity in the cluster. As an example, let's say that you have 5 Upgrade Domains and 5 Fault Domains. Now let's say that a fault domain's worth of nodes fails while you have an upgrade going on in an upgrade domain. This means that (a little less than) 40% of your cluster capacity can be gone at any time, and you probably want enough room left over on the remaining nodes to continue. This means that if your cluster previously could hold 5.83 GB of state (from our prior calculations), in reality you probably don't want to put more than about 3.5 GB of state in it since with more of that the service may not be able to get back to 100% healthy (note also that we don't build replacement replicas immediately so the nodes would have to be down for your ReplicaRestartWaitDuration before you ran into this case). There's a bunch more information about metrics, capacity, buffered capacity (which you can use to ensure that room is left on nodes for the failure cases) and fault and upgrade domains are covered in this article.
There are some other things that practically will limit the amount of state you'll be able to store. You'll want to do several things:
Estimate the size of your data. You can make a reasonable estimate up-front of how big your data is by calculating the size of each field your objects hold. Be sure to take into consideration 64-bit references. This will give you a lower-bound starting point.
Storage overhead. Each object you store in a collection will come with some overhead for storing that object. In the reliable collections depending on the collection and the operations currently in flight (copy, enumerations, updates, etc.) this overhead can range from between 100 and around 700 bytes per item (row) stored in the collections. Do know also that we're always looking for ways to reduce the amount of overhead we introduce.
We also strongly recommend running your service over some period of time and measuring actual resource consumption via performance counters. Simulating some sort of real workload and then measuring the actual usage of the metrics you care about will serve you pretty well. The reason we recommend this in particular is that you will be able to see consumption from things like which CLR object heap your objects end up placed in, how often GC is running, if there's leaks, or other things like this which will impact the amount of memory you can actually utilize.
I know that this has been a long answer but I hope you find it helpful and complete.