Indexing of unknown dimensional matrix - matlab

I have a non-fixed dimensional matrix M, from which I want to access a single element.
The element's indices are contained in a vector J.
So for example:
M = rand(6,4,8,2);
J = [5 2 7 1];
output = M(5,2,7,1)
This time M has 4 dimensions, but this is not known in advance. This is dependent on the setup of the algorithm I'm writing. It could likewise be that
M = rand(6,4);
J = [3 1];
output = M(3,1)
so I can't simply use
output=M(J(1),J(2))
I was thinking of using sub2ind, but this also needs its variables comma separated..
#gnovice
this works, but I intend to use this kind of element extraction from the matrix M quite a lot. So if I have to create a temporary variable cellJ every time I access M, wouldn't this tremendously slow down the computation??
I could also write a separate function
function x= getM(M,J)
x=M(J(1),J(2));
% M doesn't change in this function, so no mem copy needed = passed by reference
end
and adapt this for different configurations of the algorithm. This is of course a speed vs flexibility consideration which I hadn't included in my question..
BUT: this is only available for getting the element, for setting there is no other way than actually using the indices (and preferably the linear index). I still think sub2ind is an option. The final result I had intended was something like:
function idx = getLinearIdx(J, size_M)
idx = ...
end
RESULTS:
function lin_idx = Lidx_ml( J, M )%#eml
%LIDX_ML converts an array of indices J for a multidimensional array M to
%linear indices, directly useable on M
%
% INPUT
% J NxP matrix containing P sets of N indices
% M A example matrix, with same size as on which the indices in J
% will be applicable.
%
% OUTPUT
% lin_idx Px1 array of linear indices
%
% method 1
%lin_idx = zeros(size(J,2),1);
%for ii = 1:size(J,2)
% cellJ = num2cell(J(:,ii));
% lin_idx(ii) = sub2ind(size(M),cellJ{:});
%end
% method 2
sizeM = size(M);
J(2:end,:) = J(2:end,:)-1;
lin_idx = cumprod([1 sizeM(1:end-1)])*J;
end
method 2 is 20 (small number of index sets (=P) to convert) to 80 (large number of index sets (=P)) times faster than method 1. easy choice

For the general case where J can be any length (which I assume always matches the number of dimensions in M), there are a couple options you have:
You can place each entry of J in a cell of a cell array using the num2cell function, then create a comma-separated list from this cell array using the colon operator:
cellJ = num2cell(J);
output = M(cellJ{:});
You can sidestep the sub2ind function and compute the linear index yourself with a little bit of math:
sizeM = size(M);
index = cumprod([1 sizeM(1:end-1)]) * (J(:) - [0; ones(numel(J)-1, 1)]);
output = M(index);

Here is a version of gnovices option 2) which allows to process a whole matrix of subscripts, where each row contains one subscript. E.g for 3 subscripts:
J = [5 2 7 1
1 5 2 7
4 3 9 2];
sizeM = size(M);
idx = cumprod([1 sizeX(1:end-1)])*(J - [zeros(size(J,1),1) ones(size(J,1),size(J,2)-1)]).';

Related

Assign labels based on given examples for a large dataset effectively

I have matrix X (100000 X 10) and vector Y (100000 X 1). X rows are categorical and assume values 1 to 5, and labels are categorical too (11 to 20);
The rows of X are repetitive and there are only ~25% of unique rows, I want Y to have statistical mode of all the labels for a particular unique row.
And then there comes another dataset P (90000 X 10), I want to predict labels Q based on the previous exercise.
What I tried is finding unique rows of X using unique in MATLAB, and then assign statistical mode of each of these labels for the unique rows. For P, I can use ismember and carry out the same.
The issue is in the size of the dataset and it takes an 1.5-2 hours to complete the process. Is there a vectorize version possible in MATLAB?
Here is my code:
[X_unique,~,ic] = unique(X,'rows','stable');
labels=zeros(length(X_unique),1);
for i=1:length(X_unique)
labels(i)=mode(Y(ic==i));
end
Q=zeros(length(P),1);
for j=1:length(X_unique)
Q(all(repmat(X_unique(j,:),length(P),1)==P,2))=label(j);
end
You will be able to accelerate your first loop a great deal if you replace it entirely with:
labels = accumarray(ic, Y, [], #(y) mode(y));
The second loop can be accelerated by using all(bsxfun(#eq, X_unique(i,:), P), 2) inside Q(...). This is a good vectorized approach assuming your arrays are not extremely large w.r.t. the available memory on your machine. In addition, to save more time, you could use the unique trick you did with X on P, run all the comparisons on a much smaller array:
[P_unique, ~, IC_P] = unique(P, 'rows', 'stable');
EDIT:
to compute Q_unique in the following way: and then convert it back to the full array using:
Q_unique = zeros(length(P_unique),1);
for i = 1:length(X_unique)
Q_unique(all(bsxfun(#eq, X_unique(i,:), P_unique), 2)) = labels(i)
end
and convert back to Q_full to match the original P input:
Q_full = Q_unique(IC_P);
END EDIT
Finally, if memory is an issue, in addition to everything above, you might want you use a semi-vectorized approach inside your second loop:
for i = 1:length(X_unique)
idx = true(length(P), 1);
for j = 1:size(X_unique,2)
idx = idx & (X_unique(i,j) == P(:,j));
end
Q(idx) = labels(i);
% Q(all(bsxfun(#eq, X_unique(i,:), P), 2)) = labels(i);
end
This would take about x3 longer compared with bsxfun but if memory is limited then you gotta pay with speed.
ANOTHER EDIT
Depending on your version of Matlab, you could also use containers.Map to your advantage by mapping textual representations of the numeric sequences to the calculated labels. See example below.
% find unique members of X to work with a smaller array
[X_unique, ~, IC_X] = unique(X, 'rows', 'stable');
% compute labels
labels = accumarray(IC_X, Y, [], #(y) mode(y));
% convert X to cellstr -- textual representation of the number sequence
X_cellstr = cellstr(char(X_unique+48)); % 48 is ASCII for 0
% map each X to its label
X_map = containers.Map(X_cellstr, labels);
% find unique members of P to work with a smaller array
[P_unique, ~, IC_P] = unique(P, 'rows', 'stable');
% convert P to cellstr -- textual representation of the number sequence
P_cellstr = cellstr(char(P_unique+48)); % 48 is ASCII for 0
% --- EDIT --- avoiding error on missing keys in X_map --------------------
% find which P's exist in map
isInMapP = X_map.isKey(P_cellstr);
% pre-allocate Q_unique to the size of P_unique (can be any value you want)
Q_unique = nan(size(P_cellstr)); % NaN is safe to use since not a label
% find the labels for each P_unique that exists in X_map
Q_unique(isInMapP) = cell2mat(X_map.values(P_cellstr(isInMapP)));
% --- END EDIT ------------------------------------------------------------
% convert back to full Q array to match original P
Q_full = Q_unique(IC_P);
This takes about 15 seconds to run on my laptop. Most of which is consumed by computation of mode.

matlab concatenating vectors

I'm new to MATLAB, and programming in general, and I am having difficulty accomplishing what I am sure is a very, very simple task:
I have a list of vectors v_i for i from 1 to n (n in some number), all of the same size k. I would like to create a vector v that is a "concatenation" (don't know if this is the correct terminology) of these vectors in increasing order: what I mean by this is that the first k entries of v are the k entries of v_1, the k+1 to 2k entries of v are the k entries of v_2 etc. etc. Thus v is a vector of length nk.
How should I create v?
To put this into context, here is function I've began writing (rpeakindex will just a vector, roughq would be the vector v I mentioned before):
function roughq = roughq(rpeakindex)
for i from 1 to size(rpeakindex) do
v_i = [rpeakindex(i)-30:1:rpeakindex(i)+90]
end
Any help is appreciated
Let's try two things.
First, for concatenating vectors there are a couple of methods here, but the simplest would be
h = horzcat(v_1, v_2);
The bigger problem is to enumerate all vectors with a "for" loop. If your v_n vectors are in a cell array, and they are in fact v{i}, then
h= [];
for j=1:n
h = horzcat(h, v{i});
end
Finally, if they only differ by name, then call them with
h=[];
for j=1:n
h= horzcat(h, eval(sprintf('v_%d',j));
end
Let the arrays (vectors) be:
v_1=1:10;
v_2=11:20;
v_3=21:30;
v_4=31:40;
and so on.
If they are few (e. g. 4), you can directly set then as input in the cat function:
v=cat(2,v_1,v_2,v_3,v_4)
or the horzcat function
v=horzcat(v_1,v_2,v_3,v_4)
otherwise you can use the eval function within a loop
v1=[];
for i=1:4
eval(['v1=[v1 v_' num2str(i) ']'])
end
Hope this helps.
Concatenating with horzcat is definitely an option, but since these vectors are being created in a function, it would be better to concatenate these vectors automatically in the function itself rather than write out horzcat(v1,v2,....vn) manually.
Given the function mentioned in the question, I would suggest something like this:
function v = roughq(rpeakindex)
v = zeros(121,length(rpeakindex)); %// create a 2D array of all zeros
for i = 1:size(rpeakindex)
v(:,i) = [rpeakindex(i)-30:1:rpeakindex(i)+90]; %// set result to ith column of v
end
v = v(:)'; %'//reshape v to be a single vector with the columns concatenated
end
Here's a simplified example of what's going on:
N = 3;
v = zeros(5,N);
for i = 1:N
v(:,i) = (1:5)*i;
end
v = v(:)';
Output:
v =
1 2 3 4 5 2 4 6 8 10 3 6 9 12 15
You may want to read up on MATLAB's colon operator to understand the v(:) syntax.
If you mean 2d matrix, you are using for holding vectors and each row hold vector v then you can simply use the reshape command in matlab like below:
V = [] ;
for i = 1:10
V(i,:) = randi (10,1 ,10) ;
end
V_reshpae = reshape (V, 1, numel(V)) ;

Multiple constant to a matrix and convert them into block diagonal matrix in matlab

I have a1 a2 a3. They are constants. I have a matrix A. What I want to do is to get a1*A, a2*A, a3*A three matrices. Then I want transfer them into a diagonal block matrix. For three constants case, this is easy. I can let b1 = a1*A, b2=a2*A, b3=a3*A, then use blkdiag(b1, b2, b3) in matlab.
What if I have n constants, a1 ... an. How could I do this without any looping?I know this can be done by kronecker product but this is very time-consuming and you need do a lot of unnecessary 0 * constant.
Thank you.
Discussion and code
This could be one approach with bsxfun(#plus that facilitates in linear indexing as coded in a function format -
function out = bsxfun_linidx(A,a)
%// Get sizes
[A_nrows,A_ncols] = size(A);
N_a = numel(a);
%// Linear indexing offsets between 2 columns in a block & between 2 blocks
off1 = A_nrows*N_a;
off2 = off1*A_ncols+A_nrows;
%// Get the matrix multiplication results
vals = bsxfun(#times,A,permute(a,[1 3 2])); %// OR vals = A(:)*a_arr;
%// Get linear indices for the first block
block1_idx = bsxfun(#plus,[1:A_nrows]',[0:A_ncols-1]*off1); %//'
%// Initialize output array base on fast pre-allocation inspired by -
%// http://undocumentedmatlab.com/blog/preallocation-performance
out(A_nrows*N_a,A_ncols*N_a) = 0;
%// Get linear indices for all blocks and place vals in out indexed by them
out(bsxfun(#plus,block1_idx(:),(0:N_a-1)*off2)) = vals;
return;
How to use: To use the above listed function code, let's suppose you have the a1, a2, a3, ...., an stored in a vector a, then do something like this out = bsxfun_linidx(A,a) to have the desired output in out.
Benchmarking
This section compares or benchmarks the approach listed in this answer against the other two approaches listed in the other answers for runtime performances.
Other answers were converted to function forms, like so -
function B = bsxfun_blkdiag(A,a)
B = bsxfun(#times, A, reshape(a,1,1,[])); %// step 1: compute products as a 3D array
B = mat2cell(B,size(A,1),size(A,2),ones(1,numel(a))); %// step 2: convert to cell array
B = blkdiag(B{:}); %// step 3: call blkdiag with comma-separated list from cell array
and,
function out = kron_diag(A,a_arr)
out = kron(diag(a_arr),A);
For the comparison, four combinations of sizes of A and a were tested, which are -
A as 500 x 500 and a as 1 x 10
A as 200 x 200 and a as 1 x 50
A as 100 x 100 and a as 1 x 100
A as 50 x 50 and a as 1 x 200
The benchmarking code used is listed next -
%// Datasizes
N_a = [10 50 100 200];
N_A = [500 200 100 50];
timeall = zeros(3,numel(N_a)); %// Array to store runtimes
for iter = 1:numel(N_a)
%// Create random inputs
a = randi(9,1,N_a(iter));
A = rand(N_A(iter),N_A(iter));
%// Time the approaches
func1 = #() kron_diag(A,a);
timeall(1,iter) = timeit(func1); clear func1
func2 = #() bsxfun_blkdiag(A,a);
timeall(2,iter) = timeit(func2); clear func2
func3 = #() bsxfun_linidx(A,a);
timeall(3,iter) = timeit(func3); clear func3
end
%// Plot runtimes against size of A
figure,hold on,grid on
plot(N_A,timeall(1,:),'-ro'),
plot(N_A,timeall(2,:),'-kx'),
plot(N_A,timeall(3,:),'-b+'),
legend('KRON + DIAG','BSXFUN + BLKDIAG','BSXFUN + LINEAR INDEXING'),
xlabel('Datasize (Size of A) ->'),ylabel('Runtimes (sec)'),title('Runtime Plot')
%// Plot runtimes against size of a
figure,hold on,grid on
plot(N_a,timeall(1,:),'-ro'),
plot(N_a,timeall(2,:),'-kx'),
plot(N_a,timeall(3,:),'-b+'),
legend('KRON + DIAG','BSXFUN + BLKDIAG','BSXFUN + LINEAR INDEXING'),
xlabel('Datasize (Size of a) ->'),ylabel('Runtimes (sec)'),title('Runtime Plot')
Runtime plots thus obtained at my end were -
Conclusions: As you can see, either one of the bsxfun based methods could be looked into, depending on what kind of datasizes you are dealing with!
Here's another approach:
Compute the products as a 3D array using bsxfun;
Convert into a cell array with one product (matrix) in each cell;
Call blkdiag with a comma-separated list generated from the cell array.
Let A denote your matrix, and a denote a vector with your constants. Then the desired result B is obtained as
B = bsxfun(#times, A, reshape(a,1,1,[])); %// step 1: compute products as a 3D array
B = mat2cell(B,size(A,1),size(A,2),ones(1,numel(a))); %// step 2: convert to cell array
B = blkdiag(B{:}); %// step 3: call blkdiag with comma-separated list from cell array
Here's a method using kron which seems to be faster and more memory efficient than Divakar's bsxfun based solution. I'm not sure if this is different to your method, but the timing seems pretty good. It might be worth doing some testing between the different methods to work out which is more efficient for you problem.
A=magic(4);
a1=1;
a2=2;
a3=3;
kron(diag([a1 a2 a3]),A)

Accessing Ranges of Data in Vectorized Way MATLAB

I have a column vector of data in variable vdata and a list of indeces idx. I want to access vdata at the indeces x before and x after each index in idx. One way I would do it in a for loop is:
x = 10;
accessed_data = [];
for (ii = 1:length(idx))
accessed_data = vdata(idx-x:idx+x);
end
Is there a way to do this in a vectorized function? I found a solution to a very similar question here: Addressing multiple ranges via indices in a vector but I don't understand the code :(.
Assuming min(idx)-x>0 and max(idx)+x<=numel(vdata) then you can simply do
iidx = bsxfun(#plus, idx(:), -x:x); % create all indices
accessed_data = vdata( iidx );
One scheme that uses direct indexing instead of a for loop:
xx = (-x:x).'; % Range of indices
idxx = bsxfun(#plus,xx(:,ones(1,numel(idx))),idx(:).'); % Build array
idxx = idxx(:); % Columnize to interleave columns
idxx = idxx(idxx>=1&idxx<=length(vdata)); % Make sure the idx+/-x is valid index
accessed_data = vdata(idxx); % Indices of data
The second line can be replaced with a form of the first line from #Shai's answer. This scheme checks that all of the resultant indices are valid. Because some might have to be removed, you could end up with a ragged array. One way to solve this is to use cell arrays, but here I just make idxx a vector, and thus accessed_data is as well.
This gives the solution in a matrix, with one row for each value in idx. It assumes that all values in idx are greater than or equal to x, and less than or equal to length(vdata)-x.
% Data
x = 10;
idx = [12 20 15];
vdata = 1:100;
ind = repmat(-x:x,length(idx),1) + repmat(idx(:),1,2*x+1);
vdata(ind)

MATLAB: duplicating vector 'n' times [duplicate]

This question already has answers here:
Octave / Matlab: Extend a vector making it repeat itself?
(3 answers)
Closed 9 years ago.
I have a vector, e.g.
vector = [1 2 3]
I would like to duplicate it within itself n times, i.e. if n = 3, it would end up as:
vector = [1 2 3 1 2 3 1 2 3]
How can I achieve this for any value of n? I know I could do the following:
newvector = vector;
for i = 1 : n-1
newvector = [newvector vector];
end
This seems a little cumbersome though. Any more efficient methods?
Try
repmat([1 2 3],1,3)
I'll leave you to check the documentation for repmat.
This is a Faster Method Than repmat or reshape by an Order of Magnitude
One of the best methods for doing such things is Using Tony's Trick. Repmat and Reshape are usually found to be slower than Tony's trick as it directly uses Matlabs inherent indexing. To answer you question,
Lets say, you want to tile the row vector r=[1 2 3] N times like r=[1 2 3 1 2 3 1 2 3...], then,
c=r'
cc=c(:,ones(N,1));
r_tiled = cc(:)';
This method has significant time savings against reshape or repmat for large N's.
EDIT : Reply to #Li-aung Yip's doubts
I conducted a small Matlab test to check the speed differential between repmat and tony's trick. Using the code mentioned below, I calculated the times for constructing the same tiled vector from a base vector A=[1:N]. The results show that YES, Tony's-Trick is FASTER BY AN ORDER of MAGNITUDE, especially for larger N. People are welcome to try it themselves. This much time differential can be critical if such an operation has to be performed in loops. Here is the small script I used;
N= 10 ;% ASLO Try for values N= 10, 100, 1000, 10000
% time for tony_trick
tic;
A=(1:N)';
B=A(:,ones(N,1));
C=B(:)';
t_tony=toc;
clearvars -except t_tony N
% time for repmat
tic;
A=(1:N);
B=repmat(A,1,N);
t_repmat=toc;
clearvars -except t_tony t_repmat N
The Times (in seconds) for both methods are given below;
N=10, time_repmat = 8e-5 , time_tony = 3e-5
N=100, time_repmat = 2.9e-4 , time_tony = 6e-5
N=1000, time_repmat = 0.0302 , time_tony = 0.0058
N=10000, time_repmat = 2.9199 , time_tony = 0.5292
My RAM didn't permit me to go beyond N=10000. I am sure, the time difference between the two methods will be even more significant for N=100000. I know, these times might be different for different machines, but the relative difference in order-of-magnitude of times will stand. Also, I know, the avg of times could have been a better metric, but I just wanted to show the order of magnitude difference in time consumption between the two approaches. My machine/os details are given below :
Relevant Machine/OS/Matlab Details : Athlon i686 Arch, Ubuntu 11.04 32 bit, 3gb ram, Matlab 2011b
Based on Abhinav's answer and some tests, I wrote a function which is ALWAYS faster than repmat()!
It uses the same parameters, except for the first parameter which must be a vector and not a matrix.
function vec = repvec( vec, rows, cols )
%REPVEC Replicates a vector.
% Replicates a vector rows times in dim1 and cols times in dim2.
% Auto optimization included.
% Faster than repmat()!!!
%
% Copyright 2012 by Marcel Schnirring
if ~isscalar(rows) || ~isscalar(cols)
error('Rows and cols must be scaler')
end
if rows == 1 && cols == 1
return % no modification needed
end
% check parameters
if size(vec,1) ~= 1 && size(vec,2) ~= 1
error('First parameter must be a vector but is a matrix or array')
end
% check type of vector (row/column vector)
if size(vec,1) == 1
% set flag
isrowvec = 1;
% swap rows and cols
tmp = rows;
rows = cols;
cols = tmp;
else
% set flag
isrowvec = 0;
end
% optimize code -> choose version
if rows == 1
version = 2;
else
version = 1;
end
% run replication
if version == 1
if isrowvec
% transform vector
vec = vec';
end
% replicate rows
if rows > 1
cc = vec(:,ones(1,rows));
vec = cc(:);
%indices = 1:length(vec);
%c = indices';
%cc = c(:,ones(rows,1));
%indices = cc(:);
%vec = vec(indices);
end
% replicate columns
if cols > 1
%vec = vec(:,ones(1,cols));
indices = (1:length(vec))';
indices = indices(:,ones(1,cols));
vec = vec(indices);
end
if isrowvec
% transform vector back
vec = vec';
end
elseif version == 2
% calculate indices
indices = (1:length(vec))';
% replicate rows
if rows > 1
c = indices(:,ones(rows,1));
indices = c(:);
end
% replicate columns
if cols > 1
indices = indices(:,ones(1,cols));
end
% transform index when row vector
if isrowvec
indices = indices';
end
% get vector based on indices
vec = vec(indices);
end
end
Feel free to test the function with all your data and give me feedback. When you found something to even improve it, please tell me.