I want to plot a two-dimensional function of the polar coordinates r and theta in three-dimensional cartesian coordinates. I have that (sorry about bad maths formatting, LaTeX not compatible, it seems)
f(r,theta) = r/2 * (cos(theta - pi/4) + sqrt(1 + 1/2 * cos(2*theta)))
Converting r and theta to cartesian coordinates
x = r * cos(theta), y = r * sin(theta)
Further, the domain is -1<r<1 and 0<theta<2 * pi, which I define by
r = -1:2/50:1;
and
theta = 0:2*pi/50:2*pi;
giving me two vectors of the same dimensions.
I can define the x and y values used for plotting as row vectors by
x = r. * cos(theta);
and
y = r. * sin(theta);
So now I need to define the z values, which will depend on the values of x and y. I thought I should make a 101x101 where each matrix element contains a data point of the final surface. But how should I do this? I thought about using a double for loop:
for i=1:numel(r)
for j=1:numel(theta)
z(i,j) = r(i)/2 .* cos(theta(j) - pi/4) + r(i).*sqrt(1 + 1/2 * cos(2.*theta(j)));
end
end
Then simply surf(z)
While this definitely gives me a surface, it gives me the incorrect surface! I don't know what is happening here. The incorrect surface is given in Figure 1, while the correct one is given in Figure 2. Can anyone help me out? For reference, the correct surface was plotted with GeoGebra, using
A = Function[<expression 1>, <Expresison 2>, <Expression 3>, <var 1>, <start>, <stop>, <var 2>, <start>, <stop>]
Figure 1. Incorrect surface.
Figure 2. Correct surface.
As others have said, you can use meshgrid to make this work.
Here's your example using gridded r and theta and an anonymous function to replace the double loop:
r = -1:2/50:1;
theta = 0:2*pi/50:2*pi;
% define anonymous function f(r,theta)
f = #(r,theta) r/2 .* (cos(theta - pi/4) + sqrt(1 + 1/2 .* cos(2.*theta)));
% generate grids for r and theta
[r, theta] = meshgrid(r,theta);
% calculate z from gridded r and theta
z = f(r,theta);
% convert r,theta to x,y and plot with surf
x = r.*cos(theta);
y = r.*sin(theta);
surf(x,y,z);
You need to use meshgrid to get matrix coordinates if you want to use surf. Taking your x and y (lower case), call
[X,Y] = meshgrid(x,y);
Then X and Y (upper case) will have the same values as you gave it, but laid out in the two-dimensional array as expected by surf. Loop over the indices here and compute your Z, which should have all(size(Z) == size(X)).
https://www.mathworks.com/help/matlab/ref/meshgrid.html
I have polar coordinates, radius 0.05 <= r <= 1 and 0 ≤ θ ≤ 2π. The radius r is 50 values between 0.05 to 1, and polar angle θ is 24 values between 0 to 2π.
How do I interpolate r = 0.075 and theta = pi/8?
I dunno what you have tried, but interp2 works just as well on polar data as it does on Cartesian. Here is some evidence:
% Coordinates
r = linspace(0.05, 1, 50);
t = linspace(0, 2*pi, 24);
% Some synthetic data
z = sort(rand(50, 24));
% Values of interest
ri = 0.075;
ti = pi/8;
% Manually interpolate
rp = find(ri <= r, 1, 'first');
rm = find(ri >= r, 1, 'last');
tp = find(ti <= t, 1, 'first');
tm = find(ti >= t, 1, 'last');
drdt = (r(rp) - r(rm)) * (t(tp) - t(tm));
dr = [r(rp)-ri ri-r(rm)];
dt = [t(tp)-ti ti-t(tm)];
fZ = [z(rm, tm) z(rm, tp)
z(rp, tm) z(rp, tp)];
ZI_manual = (dr * fZ * dt.') / drdt
% Interpolate with MATLAB
ZI_MATLAB = interp2(r, t, z', ri, ti, 'linear')
Result:
ZI_manual =
2.737907208525297e-002
ZI_MATLAB =
2.737907208525298e-002
Based on comments you have the following information
%the test point
ri=0.53224;
ti = pi/8;
%formula fo generation of Z
g=9.81
z0=#(r)0.01*(g^2)*((2*pi)^-4)*(r.^-5).*exp(-1.25*(r/0.3).^-4);
D=#(t)(2/pi)*cos(t).^2;
z2=#(r,t)z0(r).*D(t) ;
%range of vlaues of r and theta
r=[0.05,0.071175,0.10132,0.14422,0.2053, 0.29225,0.41602,0.5922,0.84299,1.2];
t=[0,0.62832,1.2566,1.885, 2.5133,3.1416,3.7699,4.3982,5.0265,5.6549,6.2832];
and you want interplation of the test point.
When you sample some data to use them for interpolation you should consider how to sample data according to your requirements.
So when you are sampling a regular grid of polar coordinates ,those coordinates when converted to rectangular will form a circular shape that
most of the points are concentrated in the center of the cricle and when we move from the center to outer regions distance between the points increased.
%regular grid generated for r and t
[THETA R] = meshgrid(t ,r);
% Z for polar grid
Z=z2(R,THETA);
%convert coordinate from polar to cartesian(rectangular):
[X, Y] = pol2cart (THETA, R);
%plot points
plot(X, Y, 'k.');
axis equal
So when you use those point for interpolation the accuracy of the interpolation is greater in the center and lower in the outer regions where the distance between points increased.
In the other word with this sampling method you place more importance on the center region related to outer ones.
To increase accuracy density of grid points (r and theta) should be increased so if length of r and theta is 11 you can create r and theta with size 20 to increase accuracy.
In the other hand if you create a regular grid in rectangular coordinates an equal importance is given to each region . So accuracy of the interpolation will be the same in all regions.
For it first you create a regular grid in the polar coordinates then convert the grid to rectangular coordinates so you can calculate the extents (min max) of the sampling points in the rectangular coordinates. Based on this extents you can create a regular grid in the rectangular coordinates
Regular grid of rectangular coordinates then converted to polar coordinated to get z for grid points using z2 formula.
%get the extent of points
extentX = [min(X(:)) max(X(:))];
extentY = [min(Y(:)) max(Y(:))];
%sample 100 points(or more or less) inside a region specified be the extents
X_samples = linspace(extentX(1),extentX(2),100);
Y_samples = linspace(extentY(1),extentY(2),100);
%create regular grid in rectangular coordinates
[XX YY] = meshgrid(X_samples, Y_samples);
[TT RR] = cart2pol(XX,YY);
Z_rect = z2(RR,TT);
For interpolation of a test point say [ri ti] first it converted to rectangular then using XX ,YY value of z is interpolated
[xi yi] = pol2cart (ti, ri);
z=interp2(XX,YY,Z_rect,xi,yi);
If you have no choice to change how you sample the data and only have a grid of polar points as discussed with #RodyOldenhuis you can do the following:
Interpolate polar coordinates with interp2 (interpolation for gridded data)
this approach is straightforward but has the shortcoming that r and theta are not of the same scale and this may affect the accuracy of the interpolation.
z = interp2(THETA, R, Z, ti, ri)
convert polar coordinates to rectangular and then apply an interpolation method that is for scattered data.
this approach requires more computations but result of it is more reliable.
MATLAB has griddata function that given scattered points first generates a triangulation of points and then creates a regular grid on top of the triangles and interpolates values of grid points.
So if you want to interpolate value of point [ri ti] you should then apply a second interpolation to get value of the point from the interpolated grid.
With the help of some information from spatialanalysisonline and Wikipedia linear interpolation based on triangulation calculated this way (tested in Octave. In newer versions of MATLAB use of triangulation and pointLocation recommended instead of delaunay and tsearch ):
ri=0.53224;
ti = pi/8;
[THETA R] = meshgrid(t ,r);
[X, Y] = pol2cart (THETA, R);
[xi yi] = pol2cart (ti, ri);
%generate triangulation
tri = delaunay (X, Y);
%find the triangle that contains the test point
idx = tsearch (X, Y, tri, xi, yi);
pts= tri(idx,:);
%create a matrix that repesents equation of a plane (triangle) given its 3 points
m=[X(pts);Y(pts);Z(pts);ones(1,3)].';
%calculate z based on det(m)=0;
z= (-xi*det(m(:,2:end)) + yi*det([m(:,1) m(:,3:end)]) + det(m(:,1:end-1)))/det([m(:,1:2) m(:,end)]);
More refinement:
Since it is known that the search point is surrounded by 4 points we can use only those point for triangulation. these points form a trapezoid. Each diagonal of trapezoid forms two triangles so using vertices of the trapezoid we can form 4 triangles, also a point inside a trapezoid can lie in at least 2 triangles.
the previous method based on triangulation only uses information from one triangle but here z of the test point can be interpolated two times from data of two triangles and the calculated z values can be averaged to get a better approximation.
%find 4 points surrounding the test point
ft= find(t<=ti,1,'last');
fr= find(cos(abs(diff(t(ft+(0:1))))/2) .* r < ri,1,'last');
[T4 R4] = meshgrid(t(ft+(0:1)), r(fr+(0:1)));
[X4, Y4] = pol2cart (T4, R4);
Z4 = Z(fr+(0:1),ft+(0:1));
%form 4 triangles
tri2= nchoosek(1:4,3);
%empty vector of z values that will be interpolated from 4 triangles
zv = NaN(4,1);
for h = 1:4
pts = tri2(h,:);
% test if the point lies in the triangle
if ~isnan(tsearch(X4(:),Y4(:),pts,xi,yi))
m=[X4(pts) ;Y4(pts) ;Z4(pts); [1 1 1]].';
zv(h)= (-xi*det(m(:,2:end)) + yi*det([m(:,1) m(:,3:end)]) + det(m(:,1:end-1)))/det([m(:,1:2) m(:,end)]);
end
end
z= mean(zv(~isnan(zv)))
Result:
True z:
(0.0069246)
Linear Interpolation of (Gridded) Polar Coordinates :
(0.0085741)
Linear Interpolation with Triangulation of Rectangular Coordinates:
(0.0073774 or 0.0060992) based on triangulation
Linear Interpolation with Triangulation of Rectangular Coordinates(average):
(0.0067383)
Conclusion:
Result of interpolation related to structure of original data and the sampling method. If the sampling method matches pattern of original data result of interpolation is more accurate, so in cases that grid points of polar coordinates follow pattern of data result of interpolation of regular polar coordinate can be more reliable. But if regular polar coordinates do not match the structure of data or structure of data is such as an irregular terrain, method of interpolation based on triangulation can better represent the data.
please check this example, i used two for loops, inside for loop i used condition statement, if u comment this condition statement and run the program, u'll get correct answer, after u uncomment this condition statement and run the program, u'll get wrong answer. please check it.
% Coordinates
r = linspace(0.05, 1, 10);
t = linspace(0, 2*pi, 8);
% Some synthetic data
%z = sort(rand(50, 24));
z=zeros();
for i=1:10
for j=1:8
if r(i)<0.5||r(i)>1
z(i,j)=0;
else
z(i,j) = r(i).^3'*cos(t(j)/2);
end
end
end
% Values of interest
ri = 0.55;
ti = pi/8;
% Manually interpolate
rp = find(ri <= r, 1, 'first');
rm = find(ri >= r, 1, 'last');
tp = find(ti <= t, 1, 'first');
tm = find(ti >= t, 1, 'last');
drdt = (r(rp) - r(rm)) * (t(tp) - t(tm));
dr = [r(rp)-ri ri-r(rm)];
dt = [t(tp)-ti ti-t(tm)];
fZ = [z(rm, tm) z(rm, tp)
z(rp, tm) z(rp, tp)];
ZI_manual = (dr * fZ * dt.') / drdt
% Interpolate with MATLAB
ZI_MATLAB = interp2(r, t, z', ri, ti, 'linear')
Result:
z1 =
0.1632
ZI_manual =
0.1543
ZI_MATLAB =
0.1582
I am trying to get a 2D grid using matlab with x >= -1 and y <= 1 with step size of 0.1
But I'm getting 3D grid with no proper step sizes. Any ideas?
My code:
[x, y] = meshgrid(-1:0.1:5, 0:0.1:1);
surf(x,y)
Do you just want to plot a bunch of 2D points? You use plot. Using your example, you would take your x,y points and simply put dot markers for each point. Convert them into 1D arrays first before you do this:
[X,Y] = meshgrid(-1:0.1:5, 0:0.1:1);
X = X(:);
Y = Y(:);
plot(X,Y,'b.');
xlabel('X'); % // Label the X and Y axes
ylabel('Y');
This is what I get:
Edit based on comments
If you want to rotate this grid by an angle, you would use a rotation matrix and multiply this with each pair of (x,y) co-ordinates. If you recall from linear algebra, to rotate a point counter-clockwise, you would perform the following matrix multiplication:
[x'] = [cos(theta) -sin(theta)][x]
[y'] [sin(theta) cos(theta)][y]
x,y are the original co-ordinates while x',y' are the output co-ordinates after rotation of an angle theta. If you want to rotate -30 degrees (which is 30 degrees clockwise), you would just specify theta = -30 degrees. Bear in mind that cos and sin take in their angles as radians, so this is actually -pi/6 in radians. What you need to do is place each of your points into a 2D matrix. You would then use the rotation matrix and apply it to each point. This way, you're vectorizing the solution instead of... say... using a for loop. Therefore, you would do this:
theta = -pi/6; % // Define rotation angle
rot = [cos(theta) -sin(theta); sin(theta) cos(theta)]; %// Define rotation matrix
rotate_val = rot*[X Y].'; %// Rotate each of the points
X_rotate = rotate_val(1,:); %// Separate each rotated dimension
Y_rotate = rotate_val(2,:);
plot(X_rotate, Y_rotate, 'b.'); %// Show the plot
xlabel('X');
ylabel('Y');
This is what I get:
If you wanted to perform other transformations, like scaling each axis, you would just multiply either the X or Y co-ordinates by an appropriate scale:
X_scaled = scale_x*X;
Y_scaled = scale_y*Y;
X_scaled and Y_scaled are the scaled versions of your co-ordinates, with scale_x and scale_y are the scales in each dimension you want. If you wanted to translate the co-ordinates, you would add or subtract each of the dimensions by some number:
X_translate = X + X_shift; %// Or -
Y_translate = Y + Y_shift; %// Or -
X_translate and Y_translate are the translated co-ordinates, while X_shift and Y_shift are the amount of shifts you want per dimension. Note that you either do + or -, depending on what you want.
How can I plot a 3D-plane at specific point in Matlab?
Consider the plane equation
Z=(-a * X - b * Y)/c
with following coefficients:
a=0.01; b=0.03; c= 1; d=0.
I want to plot this plane around point (100,100) not at origin (0,0). How it possible to do that?
The code I used:
[X,Y] = meshgrid(x);
a=0.1;
b=0.2;
c=1;
d=0;
Z=(-a * X - b * Y)/c;
surf(X,Y,Z)
shading flat
xlabel('x')
ylabel('y')
zlabel('z')
surf() just plots whatever set of points you give it. To generate those points, you're evaluating the equation at a specific set of coordinates given by X and Y. Therefore you want those points to be centred around the region of interest:
[X, Y] = meshgrid(95:0.1:105); % e.g. +/-5 at resolution of 0.1
or, say, for arbitrary view coordinates m,n:
[X, Y] = meshgrid(m-20:m+20, n-20:n+20); % e.g. +/-20 at resolution of 1
That gives you the view around 100,100 of a plane centred at the origin, which I think is what you're asking for.
Alternatively if you want the plane itself centred at 100,100, then you need that offset in the equation:
Z=(-a * (X - 100) - b * (Y - 100))/c;
so then a view centred on the origin will be equivalent to viewing the original plane around -100,-100.
I have an ellipse in 2 dimensions, defined by a positive definite matrix X as follows: a point x is in the ellipse if x'*X*x <= 1. How can I plot this ellipse in matlab? I've done a bit of searching while finding surprisingly little.
Figured out the answer actually: I'd post this as an answer, but it won't let me (new user):
Figured it out after a bit of tinkering. Basically, we express the points on the ellipse border (x'*X*x = 1) as a weighted combination of the eigenvectors of X, which makes some of the math to find the points easier. We can just write (au+bv)'X(au+bv)=1 and work out the relationship between a,b. Matlab code follows (sorry it's messy, just used the same notation that I was using with pen/paper):
function plot_ellipse(X, varargin)
% Plots an ellipse of the form x'*X*x <= 1
% plot vectors of the form a*u + b*v where u,v are eigenvectors of X
[V,D] = eig(X);
u = V(:,1);
v = V(:,2);
l1 = D(1,1);
l2 = D(2,2);
pts = [];
delta = .1;
for alpha = -1/sqrt(l1)-delta:delta:1/sqrt(l1)+delta
beta = sqrt((1 - alpha^2 * l1)/l2);
pts(:,end+1) = alpha*u + beta*v;
end
for alpha = 1/sqrt(l1)+delta:-delta:-1/sqrt(l1)-delta
beta = -sqrt((1 - alpha^2 * l1)/l2);
pts(:,end+1) = alpha*u + beta*v;
end
plot(pts(1,:), pts(2,:), varargin{:})
I stumbled across this post while searching for this topic, and even though it's settled, I thought I might provide another simpler solution, if the matrix is symmetric.
Another way of doing this is to use the Cholesky decomposition of the semi-definite positive matrix E implemented in Matlab as the chol function. It computes an upper triangular matrix R such that X = R' * R. Using this, x'*X*x = (R*x)'*(R*x) = z'*z, if we define z as R*x.
The curve to plot thus becomes such that z'*z=1, and that's a circle. A simple solution is thus z = (cos(t), sin(t)), for 0<=t<=2 pi. You then multiply by the inverse of R to get the ellipse.
This is pretty straightforward to translate into the following code:
function plot_ellipse(E)
% plots an ellipse of the form xEx = 1
R = chol(E);
t = linspace(0, 2*pi, 100); % or any high number to make curve smooth
z = [cos(t); sin(t)];
ellipse = inv(R) * z;
plot(ellipse(1,:), ellipse(2,:))
end
Hope this might help!