My app is using TouchDB and is doing a ton of REST requests to pull deleted documents/revisions. Is it possible to basically tell Couch, "Hey, just delete them, forget about their past"? I know _changes will show what was deleted, but I'd love it if it just deleted, and didn't ask anything else... for the sake of iPhone battery life, and 3G connectivity.
There are 'compact' api, which removes all deleted docs from couchDB. You can sometimes launch it.
But standard couchDB replication doesn't send ALL revisions, but only revision history (without data), and last revision. Check your replication algorithm if for compatability with this API
Related
I am using iCloud with Core Data, based on the SQLite "Library-style" application design as specified by Apple. While the basic functionality works very well, I am concerned about the transaction logs and how they are managed.
While the database for my app is not large, it is very active and the core data stack is saved many times while the app is in use. I have noticed that a new transaction log is created for every core data save. The end result is that I have a TON of transaction logs and they take up much more space than the actual database.
1) Do the transaction logs ever get automatically pruned / coalesced, or will they continue to grow indefinitely, eventually numbering in the thousands and taking up many megabytes? It seems that the only way to manually purge the transaction logs and recreate a .baseline archive would be to disable and then re-enable iCloud (removing the ubiquity container and starting fresh). But this is obviously not a good solution.
2) My current architecture saves the core data stack often, even for minor changes. In general, this makes sense as my database is small and saving often ensures that the database file is always up-to-date. However, given the above issues with transaction logs, I am thinking that I should perhaps minimize saves to the database. Maybe doing so on a timed basis and/or on app transition states.
3) Even if I minimize the number of transaction logs by reducing how often I save the database, there seems to be an issue here, as the logs will continue to grow in number over time. Eventually the benefit of the "transaction log" design will become a burden in terms of the amount of iCloud storage used and the initial iCloud sync as a new device is added.
As Apple has provided very sparse information on iCloud and almost nothing in the form of "best practices", I would appreciate any insight from the community.
I filed a radar on this issue and received the following reply. They noted that it should be working correctly in iOS 5.1, though I have not yet verified this myself.
A clarification for any who might misunderstand the following. The transaction logs will be cleaned up by the core data internals. This is NOT something that should be performed by the application itself.
Engineering has provided the following feedback regarding this issue:
The transaction logs are intended to be deleted after all the active
peers have had a chance to read them, and they exceed a threshold of
space consumed. There was a previous issue that prevented the devices
from correctly doing so.
I am working on a regular iPhone app which pulls data from a server (XML, JSON, etc...), and I'm wondering what is the best way to implement synching data. Criteria are speed (less network data exchange), robustness (data recovery in case update fails), offline access and flexibility (adaptable when the structure of the database changes slightly, like a new column). I know it varies from app to app, but can you guys share some of your strategy/experience?
For me, I'm thinking of something like this:
1) Store Last Modified Date in iPhone
2) Upon launching, send a message like getNewData.php?lastModifiedDate=...
3) Server will process and send back only modified data from last time.
4) This data is formatted as so:
<+><data id="..."></data></+> // add this to SQLite/CoreData
<-><data id="..."></data></-> // remove this
<%><data id="..."><attribute>newValue</attribute></data></%> // new modified value
I don't want to make <+>, <->, <%>... for each attribute as well, because it would be too complicated, so probably when receive a <%> field, I would just remove the data with the specified id and then add it again (assuming id here is not some automatically auto-incremented field).
5) Once everything is downloaded and updated, I will update the Last Modified Date field.
The main problem with this strategy is: If the network goes down when I am updating something => the Last Modified Date is not yet updated => next time I relaunch the app, I will have to go through the same thing again. Not to mention potential inconsistent data. If I use a temporary table for update and make the whole thing atomic, it would work, but then again, if the update is too long (lots of data change), the user has to wait a long time until new data is available. Should I use Last-Modified-Date for each of the data field and update data gradually?
I would start by making the update routine atomic, since you'll have enough on your hands figuring out how to get the client-server communication working properly.
After that is a good time to consider tweaking it to be incremental, but only after you do some testing to figure out if it's really necessary. If you're tuning your update protocol to be as low bandwidth as possible, you might discover that even a "big" update is downloaded fast enough.
Another way to look at it is to ask yourself, how often is there going to be network trouble when an average user is doing a sync? You probably don't want to tune for unlikely scenarios.
If you are trying to optimize (minimize) the data transfer you may want to consider a different format than XML, since XML is fairly verbose. Or at least you may want to trade in XML readability for space by making each element name and attribute as small as possible, and eliminate all unnecessary whitespace.
Your basic scheme is good. The thing you need to do is to somehow make your updates idempotent so that you can restart a partially-completed transfer without risk. This is a better way to go than to try to implement some sort of true atomic commit (though you could do that too, using, eg, the SQLite database).
In our experience fairly large updates (10s of KB) can be downloaded quite rapidly, if the server is fast enough. No great need to break updates up into tiny bits. But certainly it won't hurt to try to minimize the amount of data transferred by keeping more granular info on "last update".
(And definitely you should use JSON rather than XML as your transmitted data representation.)
Wonder if you have considered using a Sync Framework to manage the synchronization. If that interests you can take a look at the open source project, OpenMobster's Sync service. You can do the following sync operations
two-way
one-way client
one-way device
bootup
Besides that, all modifications are automatically tracked and synced with the Cloud. You can have your app offline when network connection is down. It will track any changes and automatically in the background synchronize it with the cloud when the connection returns. It also provides synchronization like iCloud across multiple devices
Also, modifications in the Cloud are synched using Push notifications, so the data is always current even if it is stored locally.
In your case,
Criteria are speed (less network data exchange), robustness (data recovery in case update fails), offline access
Speed: Only the changes are sent across the network in both directions
Robustness: It stores data in a transactional store like sqlite and any failed updates are communicated in the SyncML payload. Only the successful operations are processed while the failed operations are re-tried during the next sync
Here is a link to the open source project: http://openmobster.googlecode.com
Here is a link to iPhone App Sync: http://code.google.com/p/openmobster/wiki/iPhoneSyncApp
I've got a database on my server which is about 3mb big. I'd like to ship that with my iphone application.
The most important thing is that I'd like to promote changes to the database (insert, updates, deletes) to the iphone. What's the best way of doing that? I mean - what is necessary on
- the server
- the client (= iphone)
- between; how to transfer this data?
I'm pretty free in using technologies serverside; right now, I've got an sqlite-database on the server filled with the data I'd like to sync to the iphones.
How often do you need the database to be updated, and how urgent are the changes?
If the database updates are infrequent and non-urgent, I'd have the app check for a new version of the database on startup, and if it has changed, download the entire new file.
The app would always download a small metadata file from a known URL on startup. The metadata file contains an version identifier for the latest version and a location where that version of the database can be downloaded. If the version identifier has changed from the version the app already has, will download the new version. If the version identifier has not changed, or if it can't check, the app can keep using the version it has.
Pro tip: if you want to show a progress bar for the download, include the size of the database in the metadata file. Cell networks often have transparent proxies that strip out the Content-Length header from HTTP responses.
Try using web hooks.
The concept of a WebHook is simple. A
WebHook is an HTTP callback: an HTTP
POST that occurs when something
happens; a simple event-notification
via HTTP POST.
A web application implementing
WebHooks will POST a message to a URL
when certain things happen. When a web
application enables users to register
their own URLs, the users can then
extend, customize, and integrate that
application with their own custom
extensions or even with other
applications around the web. For the
user, WebHooks are a way to receive
valuable information when it happens,
rather than continually polling for
that data and receiving nothing
valuable most of the time. WebHooks
have enormous potential and are
limited only by your imagination! (No,
it can't wash the dishes. Yet.)
You can find out more on Webhooks here:
http://www.webhooks.org/ and http://webhooks.pbworks.com/
Wonder if you have considered using a Sync Framework to manage the synchronization. If that interests you can take a look at the open source project, OpenMobster's Sync service. You can do the following sync operations
two-way
one-way client
one-way device
bootup
Besides that, all modifications are automatically tracked and synced with the Cloud. You can have your app offline when network connection is down. It will track any changes and automatically in the background synchronize it with the cloud when the connection returns. It also provides synchronization like iCloud across multiple devices
Also, modifications in the Cloud are synched using Push notifications, so the data is always current even if it is stored locally.
Here is a link to the open source project: http://openmobster.googlecode.com
Here is a link to iPhone App Sync: http://code.google.com/p/openmobster/wiki/iPhoneSyncApp
I am writting a django app and Iphone app, I need to keep them in sync.
Users can delete, update and create new objects in the web app, and in the iphone app.
When they get online with the iphone both app must be in sync.
Is there simple way to do this?
Thanks,
Joaquin
In general: There's no simple way. But I'll outline an approach.
If you don't care about changes being overwritten: Keep a timestamp of the most recent change to each record, and a timestamp of each sync. When syncing, you get a list of all updates on the iPhone since the last sync, and all updates on the server. You write from the iPhone to the server if the iPhone timestamp for that record is newer than the server one, and vice versa.
But you probably care. Say you've edited a note called "Where to meet up on Friday." It started out empty. Now, on the phone, you've written, "My house." Ten minutes later, your friend edits the same note on the server and writes, "The diner." Who wins out? Stack Overflow can't answer that for you; it's application-specific.
OK, so modify the approach above: if both the server version of a record and the local version have been edited since the last sync, then you have to ask the user what to do. That's the basic algorithm.
If you care a lot about changes not being overwritten, to the point that you want to merge changes to different places in the same documents, then your system will begin to approach the complexity of version control systems like Subversion or Git. Not at all simple.
There's no built in way to do this. You need to keep a server data store, and a local data store on the iPhone, and when online, check the differences manually, and see what action you should take on the server and the iPhone side (delete, update, etc.).
Sync is usually hard. I suggest you start laying out the server and iPhone data stores, and think how they relate, and how can the server or the iPhone know the status of their counterpart record, so to keep them in sync.
I'm looking into building an application which works just as well offline as it does online. Since the application cannot communicate with the server while in offline, there is some level of synchronization which needs to take place.
What are some good tools to read about and start thinking about when planning offline operations with synchronization for your iPhone?
What tools would I have to create on my own, versus tools that apple already provides to help with this particular issue?
I've been working on an app that handles this exact behavior for the last 2 months or so. It has a small subset of functions which are online only and a large set of functionality that is offline/online.
I'm using sqlite for local storage as suggested here with a modified version of the sqlitepersistentobjects library. The base version of sqlitepersistentobjects is not thread safe so watch out if you are using it. (check out objectiverecord in: objectivesync for a thread safe alternative but be prepared to dig into the code). If you are willing to develop for the 3.0 sdk then core data is another possibility for a sqlite library.
The overall architecture is simple enough I have modeled local storage using sqlite and remote interaction using objective resource against a rails app and REST api. It can use either xml or json for data serialization.
When an object is modified locally the change is first saved to the sqlite database record for that object and then added to a queue which is serialized and stored in the local sqlite db as well. (The queue can then be processed at any time)
If there is a connection available any queued local changes are deserialized and added to an NSOperationQueue which then processes them in the background.
In order to make this all work I've subclassed NSOperation so that it can support several types of remote queue operations - create, update, delete essentially using objective resource to make the remote requests.
The nice thing about using NSOperationQueue and NSOperation is that they handle the background threading for you so I'd highly recommend having a look at the apple docs for those classes and also at the apple threading guide.
When the application loads there is a bit of remote checking done and processed in the background to pull down the latest data - although to be honest I am still changing the way this behaves a bit.
That's a quick overview of what I've had to deal with so far...hope it helps a little.
there are plenty of application on the app store which rely on both online as well as offline data
what you should really be doing is on start of your app, run a background thread (which runs silently so your user never sees any delay). this thread downloads the latest data from your server and pushes it into your local database (sqlite is the best choice)
make sure you implement some kind of data versioning so that your app only downloads data which is actually changed since last download - else you would unnecessarily be downloading the entire dataset which can be quite huge (depending upon your app requirements)
also make sure to test for internet connectivity when doing this. if no internet is available, alert the user for sure
this way you get the best of both worlds. users when away from internet can still use your app with their local sqlite data
in iphone os 3.0 apple has introduced push services - where you can simply "PUSH" your data instead of doing a "PULL" however this is not available in the current iPhone OS (2.x.x)
Push is probably not a viable option here, since the amount of data you can push is miniscule, and basically comes back to "tell my app to make a server call". We use an online/offline model in Satchel. Whenever we have to communicate with the server, we bundle that communication (a URL and possibly some POST data) and store it to a database. If we're online, we pull it right back out, send it, and when we get a valid response back, we remove the record from the database. If we're offline, those rows build up, and the next time we ARE online, they get sent out. This is not a workable model in all situations, but can be adapted to most.
In 3.0, you've got access to CoreData, which is a great data management tool. Other than that, the NSURLXXX family is your friend.
I would store all the information I gather while offline in a SQLite database. Then, on user 's request, you can SYNC all the stored information with a server using HTTP or a custom TCP/IP protocol you can come up with.
I have been using this approach on Palm OS applications for almost 10 years now, and they do work very effectively.
As far as I know, the only "tool" you will have to accomplish this is plain old OBJECTIVE-C with Cocoa Touch. Although you could use some TCP/IP C++ libraries that will make your life easier if you decide to implement your own protocol.
Wonder if you have considered using a Sync Framework to manage the synchronization. If that interests you can take a look at the open source project, OpenMobster's Sync service. You can do the following sync operations
two-way
one-way client
one-way device
bootup
Besides that, all modifications are automatically tracked and synced with the Cloud. You can have your app offline when network connection is down. It will track any changes and automatically in the background synchronize it with the cloud when the connection returns. It also provides synchronization like iCloud across multiple devices
Also, modifications in the Cloud are synched using Push notifications, so the data is always current even if it is stored locally.
Here is a link to the open source project: http://openmobster.googlecode.com
Here is a link to iPhone App Sync: http://code.google.com/p/openmobster/wiki/iPhoneSyncApp