Hi I have an object A which contains 9 vectors all of size [1 3], three dimensional vectors. How do I sum all of these to create a new vector of size [1 3] i.e. how to I take the contribution of each vector, and sum each of their contributions to give me a final vector. Thanks in advance. My vectors are stored in a cell array. How A is defined:
ri = Rix{1,1};
rj = Riy{1,1};
vec2 = #(i)[ri(i), rj(i), 0];
A = arrayfun(vec2, reshape(1:numel(ri), size(ri)), 'UniformOutput', 0);
and this is what I have tried so far:
B = cellfun(#(A)nansum(A(:))'un', 0);
with this error
??? b = cellfun(#(distance)nansum(distance(:))'un', 0);
|
Error: Unexpected MATLAB expression.
Is this what you are looking for?
dummy = [1 2 3];
A = {dummy;dummy;dummy;dummy;dummy;dummy;dummy;dummy;dummy}
Asum = sum(cell2mat(A));
Result:
Asum = [9 18 27]
As you can see, cell2mat is the trick here.
Related
How Do i solve this summation in MATLAB without using for/while loop?
Here C is a vector(1*N matrix), n=length(c) and x is scalar.
c(1)*x^1+c(2)*x^2+c()*x^3+....+c(n)*x^n.
Or can i Create a matrix with all element equal to x but with increasing power, like x, x^2,x^3....?
There are several ways:
result = polyval(fliplr([0 c]), x);
result = sum(c.*x.^(1:numel(c)));
result = sum(c.*cumprod(repmat(x, 1, numel(c))));
As an example, for
c = [3 4 -5 2 3];
x = 9;
any of the above gives
result =
186975
Check:
>> c(1)*x^1+c(2)*x^2+c(3)*x^3+c(4)*x^4+c(5)*x^5
ans =
186975
I have A matrix which is 16x16x155460. I have a B vector which is 12955x1. I want to multiply each 1:16x1:16x1+12*n:12+12*nwith the elements of B(n). So my goal is to find the weighted sum of the A according to B. My way to do this as follows (I don't want to use for-loop and my method gives wrong answer, I could not obtain the 1:12 vectors which is consecutive) :
B = repmat(B,[1 16 16]);
B = permute(B,[2 3 1]);
B = repmat(B,[1 1 12]);
result = B.*(A);
As a small example n=2 :
A(:,:,1)=[1 2; 3 4]
A(:,:,2)=[1 2; 3 4]
A(:,:,3)=[1 2; 3 4]
A(:,:,4)=[1 2; 3 4]
B = [2,3]
Result would be:
result(:,:,1)=A(:,:,1)*B(1);
result(:,:,2)=A(:,:,2)*B(1);
result(:,:,3)=A(:,:,1)*B(2);
result(:,:,4)=A(:,:,2)*B(2);
If I understood the problem correctly, you can use the powerful trio of bsxfun, permute and reshape to solve it, like so -
[M,N,R] = size(A);
mult_out = bsxfun(#times,reshape(A,M,N,numel(B),[]),permute(B(:),[4 3 1 2]))
out = reshape(mult_out,M,N,[])
Here is what I want, a 3-D matrix:
K = 2:2.5:10;
den = zeros(1,4,4);
for i = 1:1:4
den(:,:,i) = [1, 5, K(i)-6, K(i)];
end
Or, a cell array is also acceptable:
K = 2:2.5:10;
for i = 1:1:4
den{i} = [1, 5, K(i)-6, K(i)];
end
But I want to know if there is a more efficient way of doing this using vectorized code like:
K = 2:2.5:10;
den = [1, 5, K-6, K];
I know the last code will not get what I wanted. But, like I can use:
v = [1 2 3];
v2 = v.^2;
instead of:
v = [1 2 3];
for i = 1:length(v)
v(i) = v(i)^2;
end
to get the matrix I want. Is there a similar way of doing this so that I can get the 3-D matrix or cell array I mentioned at the beginning more efficiently?
You need to "broadcast" the scalar values in columns so they are of the same length as your K vector. MATLAB does not do this broadcasting automatically, so you need to repeat the scalars and create vectors of the appropriate size. You can use repmat() for this.
K = 2:2.5:10;
%% // transpose K to a column vector:
K = transpose(K);
%% // helper function that calls repmat:
f = #(v) repmat(v, length(K), 1);
%% // your matrix:
den = [f(1) f(5) K-6 K];
This should be more optimized for speed but requires a bit more intermediary memory than the loop does.
Just use reshape with a 1*3 size:
den = reshape([ones(1,length(K));ones(1,length(K))*5; K-6; K],[1 4 length(K)]);
I think the used extra memory by reshape should be low and constant (dependent only on the length of the vector of new sizes).
You can use the classic line equation y=a*x+b, extended to the matrix form:
k = 2:2.5:10 ;
fa = [0 0 1 1].' ; %' // "a" coefficients
fb = [1 5 -6 0].' ; %' // "b" coefficients
d(1,:,:) = fa*k + fb*ones(1,4) ;
The above is better for clarity, but if you're not bothered you can also pack everything in one line:
d(1,:,:) = [0 0 1 1].' * (2:2.5:10) + [1 5 -6 0].' * ones(1,4) ;
If you need to re-use the principle for many different values of k, then you can use an anonymous function to help:
fden = #(k) [0 0 1 1].' * k + [1 5 -6 0].' * ones(1,4) ; %// define anonymous function
k = 2:2.5:10 ;
d(1,:,:) = fden(k) ; %// use it for any value of "k"
I want to write this matrix in matlab,
s=[0 ..... 0
B 0 .... 0
AB B .... 0
. . .
. . .
. . . 0 ....
A^(n-1)*B ... AB B ]
I have tried this below code but giving error,
N = 50;
A=[2 3;4 1];
B=[3 ;2];
[nx,ny] = size(A);
s(nx,ny,N) = 0;
for n=1:1:N
s(:,:,n)=A.^n;
end
s_x=cat(3, eye(size(A)) ,s);
for ii=1:1:N-1
su(:,:,ii)=(A.^ii).*B ;
end
z= zeros(1,60,1);
su1 = [z;su] ;
s_u=repmat(su1,N);
seems like the concatenation of matrix is not being done.
I am a beginner so having serious troubles,please help.
Use cell arrays and the answer to your previous question
A = [2 3; 4 1];
B = [3 ;2 ];
N = 60;
[cs{1:(N+1),1:N}] = deal( zeros(size(B)) ); %// allocate space, setting top triangle to zero
%// work on diagonals
x = B;
for ii=2:(N+1)
[cs{ii:(N+2):((N+1)*(N+2-ii))}] = deal(x); %//deal to diagonal
x = A*x;
end
s = cell2mat(cs); %// convert cells to a single matrix
For more information you can read about deal and cell2mat.
Important note about the difference between matrix operations and element-wise operations
In your question (and in your previous one) you confuse between matrix power: A^2 and element-wise operation A.^2:
matrix power A^2 = [16 9;12 13] is the matrix product of A*A
element-wise power A.^2 takes each element separately and computes its square: A.^2 = [4 9; 16 1]
In yor question you ask about matrix product A*b, but the code you write is A.*b which is an element-by-element product. This gives you an error since the size of A and the size of b are not the same.
I often find that Matlab gives itself to a coding approach of "write what it says in the equation". That also leads to code that is easy to read...
A = [2 3; 4 1];
B = [3; 2];
Q = 4;
%// don't need to...
s = [];
%// ...but better to pre-allocate s for performance
s = zeros((Q+1)*2, Q);
X = B;
for m = 2:Q+1
for n = m:Q+1
s(n*2+(-1:0), n-m+1) = X;
end
X = A * X;
end
I have two matrices A and B. A is N-by-L matrix and B is L-by-N matrix.
A = [1 2 3;
4 5 6];
B = [ 7 8;
9 10;
11 12];
I would like to multiply the each row of the first matrix by the corresponding column of the second matrix. After the multiplication I would have a (Nx1) vector. The result would be
C = [ 1*7 + 2*9 + 3*11,
4*8 + 5*10 + 6*12];
I can perform the multiplication with a for loop, but it is not efficient for large matrices.
ASize = size(A);
for i = 1:ASize(1),
C(i) = A(i,:) * B(:,i);
end
Is there a better way to do this?
I think this should do the trick:
C = sum(A.*B', 2);
I think this will work better and is simple
C=diag(A*B);