Summation in Matlab without for/while loop - matlab

How Do i solve this summation in MATLAB without using for/while loop?
Here C is a vector(1*N matrix), n=length(c) and x is scalar.
c(1)*x^1+c(2)*x^2+c()*x^3+....+c(n)*x^n.
Or can i Create a matrix with all element equal to x but with increasing power, like x, x^2,x^3....?

There are several ways:
result = polyval(fliplr([0 c]), x);
result = sum(c.*x.^(1:numel(c)));
result = sum(c.*cumprod(repmat(x, 1, numel(c))));
As an example, for
c = [3 4 -5 2 3];
x = 9;
any of the above gives
result =
186975
Check:
>> c(1)*x^1+c(2)*x^2+c(3)*x^3+c(4)*x^4+c(5)*x^5
ans =
186975

Related

Assign multiple function outputs to a vector using indexing in MATLAB

I have a simple MATLAB function outputting multiple variables:
function [a,b] = MultipleOutputs()
a = 6;
b = 8;
end
I want to assign the two output variables to 2 certain elements in an existing vector:
x = ones(1,4);
x(2:3) = MultipleOutputs()
However, this gives me:
x =
1 6 6 1
Instead of:
x =
1 6 8 1
I have had this problem in multiple cases, was never able to find the solution.
You have 2 choices:
Concatenate the vectors after outputting them separately
[a,b] = MultipleOutputs();
x = ones(1,4);
x(2:3) = [a,b];
concatenate the vectors before outputting them
function a = MultipleOutputs()
a(1) = 6;
a(2) = 8;
end
x(2:3) = MultipleOutputs();
when you run MultipleOutputs() like that in another function, it only outputs only the first element, which in this case is a.
So eventually your statement x(2:3) = MultipleOutputs() is equivalent to x(2:3) = 6.
A simple fix would be to extract all the elements:
[a,b] = MultipleOutputs();
x(2:3) = [a b];

How to write this matrix in matlab,

I want to write this matrix in matlab,
s=[0 ..... 0
B 0 .... 0
AB B .... 0
. . .
. . .
. . . 0 ....
A^(n-1)*B ... AB B ]
I have tried this below code but giving error,
N = 50;
A=[2 3;4 1];
B=[3 ;2];
[nx,ny] = size(A);
s(nx,ny,N) = 0;
for n=1:1:N
s(:,:,n)=A.^n;
end
s_x=cat(3, eye(size(A)) ,s);
for ii=1:1:N-1
su(:,:,ii)=(A.^ii).*B ;
end
z= zeros(1,60,1);
su1 = [z;su] ;
s_u=repmat(su1,N);
seems like the concatenation of matrix is not being done.
I am a beginner so having serious troubles,please help.
Use cell arrays and the answer to your previous question
A = [2 3; 4 1];
B = [3 ;2 ];
N = 60;
[cs{1:(N+1),1:N}] = deal( zeros(size(B)) ); %// allocate space, setting top triangle to zero
%// work on diagonals
x = B;
for ii=2:(N+1)
[cs{ii:(N+2):((N+1)*(N+2-ii))}] = deal(x); %//deal to diagonal
x = A*x;
end
s = cell2mat(cs); %// convert cells to a single matrix
For more information you can read about deal and cell2mat.
Important note about the difference between matrix operations and element-wise operations
In your question (and in your previous one) you confuse between matrix power: A^2 and element-wise operation A.^2:
matrix power A^2 = [16 9;12 13] is the matrix product of A*A
element-wise power A.^2 takes each element separately and computes its square: A.^2 = [4 9; 16 1]
In yor question you ask about matrix product A*b, but the code you write is A.*b which is an element-by-element product. This gives you an error since the size of A and the size of b are not the same.
I often find that Matlab gives itself to a coding approach of "write what it says in the equation". That also leads to code that is easy to read...
A = [2 3; 4 1];
B = [3; 2];
Q = 4;
%// don't need to...
s = [];
%// ...but better to pre-allocate s for performance
s = zeros((Q+1)*2, Q);
X = B;
for m = 2:Q+1
for n = m:Q+1
s(n*2+(-1:0), n-m+1) = X;
end
X = A * X;
end

how to omit for loop when there is constrains

I have the following two arrays:
A = [1 2;3 4] and B = [1 5 4]
I want to do the following operation:
for each element of A(call it A(i))
for each element of B~=b do
( (A(i) - 1)/(b-1) ) * ( (A(i) - 5)/(b-5) ) * ( (A(i)- 4)/(b-4) )
end
end
It means that, sometimes the numerator equals to zero, so the product should be zeros. And I want to do the operation for the elements of B which are not equal to the b in denominator to not make it Inf.
How can I do this for the whole matrix A instead of using for loop?
Code
A = [1 2;3 4];
B = [1 5 4];
m1 = bsxfun(#minus,A,permute([1 5 4],[3 1 2]));
m2 = bsxfun(#minus,B,permute([1 5 4],[3 1 2]));
for k1=1:size(A,1)
for k2=1:size(A,2)
t2 = squeeze(bsxfun(#rdivide,m1(k1,k2,:),m2));
t2(1:size(t2,1)+1:end)=1;
A1(k1,k2) = prod(t2(:)); %%// Output
end
end
Output
A1 =
0 -0.2500
-0.1111 0
You can remove the nested loops, but at least two issues there -
You would be going to 4th and 5th dimension with it, using bsxfun. So, debugging would be tough.
bsxfun with higher dimensions to my knowledge seems to get slower.
You could just do the operation, and correct later:
C = (A-1)./(B-1) .* (A-5)./(B-5) .* (A-4)./(B-4)
C(isinf(C)) = 0;
or
C(B==b) = 0;
Possibly you'd need bsxfun, I'm not clear on the size of the output you want...

Obtain matrix of indices in octave / matlab

Given some multidimensional matrix A in Octave / Matlab,
What's the easiest way to get a matrix of the same size as A where all elements are replaced by their index along the k'th dimension
ie for the matrix
A =
ans(:,:,1) =
0.095287 0.191905
0.226278 0.749100
ans(:,:,2) =
0.076826 0.131639
0.862747 0.699016
I want a function f such that
f(A,1) =
ans(:,:,1) =
1 1
2 2
ans(:,:,2) =
1 1
2 2
f(A,2) =
ans(:,:,1) =
1 2
1 2
ans(:,:,2) =
1 2
1 2
and
f(A, 3) =
ans(:,:,1) =
1 1
1 1
ans(:,:,2) =
2 2
2 2
Also, given a sparse matrix B
What's the easiest way to get another sparse matrix of the same size where the nonzero elements are replaced by their index along the k'th dimension? (so same problem as above, but for only the nonzero elements)
Ideally I'm looking for a way which is well-vectorized for octave (meaning it doesn't explicitly loop over anything)
CLARIFICATION: For the sparse matrix one, I'm looking for a solution which does not involve creating a full size(B) matrix at any point
ndgrid() does what you want, although not in the format you are looking for. If you know the dims of the input A beforehand, you can use the following line to create the N-dimentional mesh grid:
% for matrix a where ndims(a) == 3
[x, y, z] = ndgrid (1:size(a,1), 1:size(a,2), 1:size(a,3));
% x is like f(a, 1)
% y is like f(a, 2)
% z is like f(a, 3)
You may be able to write a custom wrapper around ndgrid() to convert it to the function format you are looking for.
In case anyone's curious, since I didn't know about ndgrid, here's the answer I came up with:
function [y] = indices(a,k)
s = size(a);
n = s(k);
D = length(s);
x = permute(a,[k,1:(k-1),(k+1):D]);
y = reshape(x,n,[]);
y = diag(1:n) * ones(size(y));
y = reshape(y,size(x));
y = permute(y,[(2:k),1,(k+1):D]);
endfunction
function [y] = spindices(a,k)
s = size(a);
n = s(k);
D = length(s);
x = permute(a,[k,1:(k-1),(k+1):D]);
y = reshape(x,n,[]);
y = spdiag(1:n) * spones(y);
y = reshape(y,size(x));
y = permute(y,[(2:k),1,(k+1):D]);
endfunction

special add in matlab [duplicate]

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
How to Add a row vector to a column vector like matrix multiplication
I have a nx1 vector and a 1xn vector. I want to add them in a special manner like matrix multiplication in an efficient manner (vectorized):
Example:
A=[1 2 3]'
B=[4 5 6]
A \odd_add B =
[1+4 1+5 1+6
2+4 2+5 2+6
3+4 3+5 3+6
]
I have used bsxfun in MATLAB, but I think it is slow. Please help me...
As mentioned by #b3. this would be an appropriate place to use repmat. However in general, and especially if you are dealing with very large matrices, bsxfun normally makes a better substitute. In this case:
>> bsxfun(#plus, [1,2,3]', [4,5,6])
returns the same result, using about a third the memory in the large-matrix limit.
bsxfun basically applies the function in the first argument to every combination of items in the second and third arguments, placing the results in a matrix according to the shape of the input vectors.
I present a comparison of the different methods mentioned here. I am using the TIMEIT function to get robust estimates (takes care of warming up the code, average timing on multiple runs, ..):
function testBSXFUN(N)
%# data
if nargin < 1
N = 500; %# N = 10, 100, 1000, 10000
end
A = (1:N)';
B = (1:N);
%# functions
f1 = #() funcRepmat(A,B);
f2 = #() funcTonyTrick(A,B);
f3 = #() funcBsxfun(A,B);
%# timeit
t(1) = timeit( f1 );
t(2) = timeit( f2 );
t(3) = timeit( f3 );
%# time results
fprintf('N = %d\n', N);
fprintf('REPMAT: %f, TONY_TRICK: %f, BSXFUN: %f\n', t);
%# validation
v{1} = f1();
v{2} = f2();
v{3} = f3();
assert( isequal(v{:}) )
end
where
function C = funcRepmat(A,B)
N = numel(A);
C = repmat(A,1,N) + repmat(B,N,1);
end
function C = funcTonyTrick(A,B)
N = numel(A);
C = A(:,ones(N,1)) + B(ones(N,1),:);
end
function C = funcBsxfun(A,B)
C = bsxfun(#plus, A, B);
end
The timings:
>> for N=[10 100 1000 5000], testBSXFUN(N); end
N = 10
REPMAT: 0.000065, TONY_TRICK: 0.000013, BSXFUN: 0.000031
N = 100
REPMAT: 0.000120, TONY_TRICK: 0.000065, BSXFUN: 0.000085
N = 1000
REPMAT: 0.032988, TONY_TRICK: 0.032947, BSXFUN: 0.010185
N = 5000
REPMAT: 0.810218, TONY_TRICK: 0.824297, BSXFUN: 0.258774
BSXFUN is a clear winner.
In matlab vectorization, there is no substitute for Tony's Trick in terms of speed in comparison to repmat or any other built in Matlab function for that matter. I am sure that the following code must be fastest for your purpose.
>> A = [1 2 3]';
>> B = [4 5 6];
>> AB_sum = A(:,ones(3,1)) + B(ones(3,1),:);
The speed differential will be much more apparent (at LEAST an order of magnitude) for larger size of A and B. See this test I conducted some time ago to ascertain the superiority of Tony's Trick over repmatin terms of time consumption.
REPMAT is your friend:
>> A = [1 2 3]';
>> B = [4 5 6];
>> AplusB = repmat(A, 1, 3) + repmat(B, 3, 1)
AplusB =
5 6 7
6 7 8
7 8 9