I have following matrices :
X=1 2 3
A=1 2 3
4 5 6
7 8 9
I Want to do
for each (i,j) in A
B(i,j) = sum(A(i,j)*x)
i.e. each element of A is multiplied by vector X, and we sum all 3 elements of that vector.
Can it be done without for loop ?
Something like this perhaps ?
B = A.*sum(X)
EDIT As #HighPerformanceMark points out, you can simply multiply by the sum of X, which is clearly preferrable. Below is a solution that does exactly the steps you wanted to do, which may make my solution useful for non-linear variants of the problem.
You can turn X into a 1-by-1-by-3 array, and multiply it with A to get a 3-by-3-by-3 array, which you can then sum along the third dimension:
X = permute(X,[1,3,2]); %# make X 1*1*3
B = sum( bsxfun(#times, A, X), 3); %# multiply and sum
Related
I simplify my problem, let says I have three matrices.
I want to extract the red-boxed sub-matrices. I define
S = [1 4;
2 5]
that are the linear indices of the above matrices. So, A(S), B(S) and C(S) can extract the entries of the three matrices.
I pack them into vector by V = [ A(S)(:); B(S)(:); C(S)(:) ]. Let says after some manipulations, I obtain a new vector
V_new = [12 9 8 12 21 8 7 5 3 12 11 10]'
Here comes to my problem:
E.g for matrix A, I want to obtain
2->12, 5->9, 4->8 and 6->12
which are the first four entries of my V_new.
Since I have around 200 matrices, I have no idea to swap along the 200 matrices and the updated vector, V_new at the same time. Is writing a for-loop best way to do this purpose?
Thanks in advance.
Assuming that your A, B and C matrices have the same dimensions, rather work with a 3D matrix.
e.g. assuming your example matrices
M = cat(3,A,B,C)
No to extract those 4 upper left elements:
M_subset = M(1:2,1:2,:)
And then to reshape them into the vector you had:
V = M_subset(:)
then manipulate it to get V_new and finally put it back in the original:
M(1:2,1:2,:) = reshape(V_new,2,2,[])
I need to create a polynomial of the form:
P(x) = q(1,1) + q(2,2)(x-z(1)) + q(3,3)(x-z(1))(x-z(2)) + --- + q(2n, 2n)(x-z(1))(x-z(2))...(x-z(2n)) NOTE: The indices of the equation have been shifted to accomodate MATLAB.
in MATLAB. Consult this link here specifically slides 15 and 16.
I have the matrix Q filled, so I have the diagonal, and I also have z(1:2n) filled.
I'm having a hard time figuring out a way to create a polynomial that I can graph this polynomial. I've tried to use a for loop to append each term to P(x), but it doesn't operate the way I thought it would.
So far, my code will calculate the coefficients (presented as Q(0,0) -> Q(2n+1, 2n+1) in the problem above) without a problem.
I'm having an issue with the construction of a degree n polynomial of the form described above. Plotting makes more sense now, create a vector x with evaluative values, and then run them through the polynomial "function" and plot the x vector against the resulting vector.
So I just need to create this polynomial.
I would use diag and cumprod to help you accomplish this. First use diag to extract the diagonals of your matrix Q. After, use cumprod to generate a vector of cumulative products.
How cumprod works on a vector is that for each element in the vector, the i'th element collects products from 1 up to the i'th element. As an example, if we had a vector V = [1 2 3 4 5], cumprod(V) would produce [1 2 6 24 120]. The 4th element (as an example) would be 1*2*3*4, representing the products from the 1st to the 4th element.
As such, this is the code that I would do:
qdiag = diag(Q);
xMinusZ = x - z; % Takes z and does x - z for every element in z
cumProdRes = cumprod(xMinusZ);
P = sum(qdiag .* [1;cumProdRes(1:end-1)]);
P should give you P(x) that you desired. Make sure that z is a column vector to make it compatible with the diagonals extracted from Q.
NB: I believe there is a typo in your equation. The last term of your equation (going with your convention) should have (x-z(2n-1)) and not (x-z(2n)). This is because the first term in your equation does not have z.
Here's an example. Let's suppose Q is defined
Q = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16];
The vector z is:
z = [4;3;2;1];
Let's evaluate the function at x = 2
Extracting the diagonals of Q should give us Q = [1;6;11;16]. Subtract x from every element of z should give us:
xMinusZ = [-2;-1;0;1];
Using the equation that you have above, we have:
P = 1 + 6*(-2) + 11*(-2)*(-1) + 16*(-2)*(-1)*(0) = 11
This is what the code should give.
What if we want to do this for more than one value of x?
As you have stated in your post, you want to evaluate this for a series of x values. As such, you need to modify the code so that it looks like this (make sure that x is a column vector):
qdiag = diag(Q);
xMinusZ = repmat(x,1,length(z)) - repmat(z',length(z),1);
cumProdRes = cumprod(xMinusZ,2);
P = sum(repmat(qdiag',length(z),1).*[ones(length(z),1) cumProdRes(:,1:end-1)],2);
P should now give you a vector of outputs, and so if you want to plot this, simply do plot(x,P);
I have two vectors with the same elements but their order is not same. For eg
A
10
9
8
B
8
9
10
I want to find the mapping between the two
B2A
3
2
1
How can I do this in matlab efficiently?
I think the Matlab sort is efficient. So:
[~,I]=sort(A); %sort A; we want the indices, not the values
[~,J]=sort(B); %same with B
%I(1) and J(1) both point to the smallest value, and a similar statement is true
%for other pairs, even with repeated values.
%Now, find the index vector that sorts I
[~,K]=sort(I);
%if K(1) is k, then A(k) is the kth smallest entry in A, and the kth smallest
%entry in B is J(k)
%so B2A(1)=J(k)=J(K(1)), where BSA is the desired permutation vector
% A similar statement holds for the other entries
%so finally
B2A=J(K);
if the above were in script "findB2A" the following should be a check for it
N=1e4;
M=100;
A=floor(M*rand(1,N));
[~,I]=sort(rand(1,N));
B=A(I);
findB2A;
all(A==B(B2A))
There are a couple of ways of doing this. The most efficient in terms of lines of code is probably using ismember(). The return values are [Lia,Locb] = ismember(A,B), where Locb are the indices in B which correspond to the elements of A. You can do [~, B2A] = ismember(A, B) to get the result you want. If your version of MATLAB does not allow ~, supply a throwaway argument for the first output.
You must ensure that there is a 1-to-1 mapping to get meaningful results, otherwise the index will always point to the first matching element.
Here a solution :
arrayfun(#(x)find(x == B), A)
I tried with bigger arrays :
A = [ 7 5 2 9 1];
B = [ 1 9 7 5 2];
It gives the following result :
ans =
3 4 5 2 1
Edit
Because arrayfun is usually slower than the equivalent loop, here a solution with a loop:
T = length(A);
B2A = zeros(1, length(A));
for tt = 1:T
B2A(1, tt) = find(A(tt) == B);
end
I would go for Joe Serrano's answer using three chained sort's.
Another approach is to test all combinations for equality with bsxfun:
[~, B2A] = max(bsxfun(#eq, B(:), A(:).'));
This gives B2A such that B(B2A) equals A. If you want it the other way around (not clear from your example), simply reverse A and B within bsxfun.
I have a vector A= [4 7 10] what I want to do is to sum every two elements and put the result in a new vector. So for example vector B= [11,17] which is the the sum of 4+7 and 7+10.
So if anyone could advise me how can I do this without loops.
In my view it is:
B = A(1:end-1) + A(2:end);
Here is an alternative that will be easy to generalize should you want to add groups of 3 or 4 etc in the future:
n = 2
conv(A, ones(1, n), 'valid')
You can do this
B = A(:,1:end-1) + A(:,2:end);
This code doesn't limit to just row vector. It will work on MxN matrix as well.
I'm desperately trying to avoid a for loop in Matlab, but I cannot figure out how to do it. Here's the situation:
I have two m x n matrices A and B and two vectors v and w of length d. I want to outer multiply A and v so that I get an m x n x d matrix where the (i,j,k) entry is A_(i,j) * v_k, and similarly for B and w.
Afterward, I want to add the resulting m x n x d matrices, and then take the mean along the last dimension to get back an m x n matrix.
I'm pretty sure I could handle the latter part, but the first part has me completely stuck. I tried using bsxfun to no avail. Anyone know an efficient way to do this? Thanks very much!
EDIT: This revision comes after the three great answers below. gnovice has the best answer to the question I asked without a doubt. However,the question that I meant to ask involves squaring each entry before taking the mean. I forgot to mention this part originally. Given this annoyance, both of the other answers work well, but the clever trick of doing algebra before coding doesn't help this time. Thanks for the help, everyone!
EDIT:
Even though the problem in the question has been updated, an algebraic approach can still be used to simplify matters. You still don't have to bother with 3-D matrices. Your result is just going to be this:
output = mean(v.^2).*A.^2 + 2.*mean(v.*w).*A.*B + mean(w.^2).*B.^2;
If your matrices and vectors are large, this solution will give you much better performance due to the reduced amount of memory required as compared to solutions using BSXFUN or REPMAT.
Explanation:
Assuming M is the m-by-n-by-d matrix that you get as a result before taking the mean along the third dimension, this is what a span along the third dimension will contain:
M(i,j,:) = A(i,j).*v + B(i,j).*w;
In other words, the vector v scaled by A(i,j) plus the vector w scaled by B(i,j). And this is what you get when you apply an element-wise squaring:
M(i,j,:).^2 = (A(i,j).*v + B(i,j).*w).^2;
= (A(i,j).*v).^2 + ...
2.*A(i,j).*B(i,j).*v.*w + ...
(B(i,j).*w).^2;
Now, when you take the mean across the third dimension, the result for each element output(i,j) will be the following:
output(i,j) = mean(M(i,j,:).^2);
= mean((A(i,j).*v).^2 + ...
2.*A(i,j).*B(i,j).*v.*w + ...
(B(i,j).*w).^2);
= sum((A(i,j).*v).^2 + ...
2.*A(i,j).*B(i,j).*v.*w + ...
(B(i,j).*w).^2)/d;
= sum((A(i,j).*v).^2)/d + ...
sum(2.*A(i,j).*B(i,j).*v.*w)/d + ...
sum((B(i,j).*w).^2)/d;
= A(i,j).^2.*mean(v.^2) + ...
2.*A(i,j).*B(i,j).*mean(v.*w) + ...
B(i,j).^2.*mean(w.^2);
Try reshaping the vectors v and w to be 1 x 1 x d:
mean (bsxfun(#times, A, reshape(v, 1, 1, [])) ...
+ bsxfun(#times, B, reshape(w, 1, 1, [])), 3)
Here I am using [] in the argument to reshape to tell it to fill that dimension in based on the product of all the other dimensions and the total number of elements in the vector.
Use repmat to tile the matrix in the third dimension.
A =
1 2 3
4 5 6
>> repmat(A, [1 1 10])
ans(:,:,1) =
1 2 3
4 5 6
ans(:,:,2) =
1 2 3
4 5 6
etc.
You still don't have to resort to any explicit loops or indirect looping using bsxfun et al. for your updated requirements. You can achieve what you want by a simple vectorized solution as follows
output = reshape(mean((v(:)*A(:)'+w(:)*B(:)').^2),size(A));
Since OP only says that v and w are vectors of length d, the above solution should work for both row and column vectors. If they are known to be column vectors, v(:) can be replaced by v and likewise for w.
You can check if this matches Lambdageek's answer (modified to square the terms) as follows
outputLG = mean ((bsxfun(#times, A, reshape(v, 1, 1, [])) ...
+ bsxfun(#times, B, reshape(w, 1, 1, []))).^2, 3);
isequal(output,outputLG)
ans =
1