I am very new to GWT.
I am using ext-gwt widgets.
I found many places in my office code containing like,
class A extends BaseModel{
private UserAccountDetailsDto userAccountDetailsDto = null;
//SETTER & GETTER IN BASEMODEL WAY
}
Also, the DTO reference is unused.
public class UserAccountDetailsDto implements Serializable{
private Long userId=null;
private String userName=null;
private String userAccount=null;
private String userPermissions=null;
//NORMAL SETTER & GETTER
}
Now, I am able to get the result from GWT Server side Code and things Work fine, but when I comment the DTO reference inside the class A, I am not getting any Result.
Please explain me the need of that.
Thanks
Well the problem is in implementation of GXT BaseModel and GWT-RPC serialization.
BaseModel is based around special GXT map, RpcMap. This map has defined special serialization rules, which let's avoid RPC type explosion, but as side effect, only some simple types stored in map will be serialized. E.g. you can put any type inside the map, but if you serialize/deserialize it, only values of type Integer, String ,Double,Byte, Float and Short (and arrays of this types) will be present. So the meaning behind putting reference to the DTO inside BaseModel, is to tell GWT-RPC that this type is also have to be serialized.
Detailed explanation
Basically GWT-RPC works like this:
When you define an interface for service, GWT-RPC analyzes all the classes used in parameters/ return type, to create serializers/deserializers. If you return something like Map<Object,Object> from your service, GWT-RPC will have to create a serializer for each class which implements Map and Serializable interfaces, but also it will generate serializers for each class which implements Serializable. In the end it is quite a bad situation, because the size of your compiled js file will be much biggger. This situation is called GWT-RPC type explosion.
So, in the BaseModel, all values are stored in RpcMap. And RpcMap has custom written serializer (RpcMap_CustomFieldSerializer you can see it's code if you interested how to create such things), so it doesn't cause the problem described above. But since it has custom serializer GWT dosn't know which custom class have been put inside RpcMap, and it doesn't generate serializers for them. So when you put some field into your BaseModel class, gwt knows that it might need to be able to serialize this class, so it will generate all the required stuff for this class.
Porting GXT2 Application code using BaseModel to GXT3 Model is uphill task. It would be more or less completely rewrite on model side with ModelProviders from GXT3 providing some flexibility. Any code that relies on Model's events, store, record etc are in for a rewrite.
Related
I'm a beginner in MVVM architecture and I'm stuck on an issue in a product app.
The issue: Mapping a Model to an Entity
Let me explain my code structure;
Domain > Respository > order_repo.dart
This order_repo.dart is an abstract class OrderRepo that declares a function getOrders that returns OrderEntity.
Data > Repo Implementation > order_repo_impl.dart
The order_repo_impl.dart contains a class OrderRepoImpl that defines the function getOrders that returns OrderModel that extends OrderEntity.
Domain > Usecase > order_usecase.dart
The order_usecase.dart contains a class that uses OrderUsecase that uses an instance of OrderRepo to call getOrders. Both the getOrders and call functions return OrderEntity.
The problem is that when I call the usecase, I expect it to return OrderEnity but the runtimeType is OrderModel. I tried to parse it as OrderModel but I could not do that because I get this warning, Unnecessary Cast, because at compile time the compiler is also expecting OrderEntity.
One solution I found is to define a Translator, that would convert OrderModel to OrderEntity inside usecase, but I'm confused regarding the right place for its definition, because I cannot use OrderModel inside the Domain layer as per Clean Architecutre to keep Domain independent of other layers and if I define the Tanslator inside Data layer, I still cannot call it in the usecase, because of the same reason.
It is bad practice
The order_repo_impl.dart contains a class OrderRepoImpl that defines the function getOrders that returns OrderModel that extends OrderEntity.
Not always model can extend entity f.e. (Code-Generated Model)
The domain layer should not know about implementation and about the data layer, because Implementation can change but Business logic will not as long as there is no changes in business logic.
I found is to define a Translator that would convert OrderModel to OrderEntity inside usecase
It is good practice
It is good practice to convert it inside implementation of repository. Because, repository is kind of binding between domain and data layers,
Or even, You can create converter class that translate entity to model and vice verca and the instance of the class will be to the constructor of repository implementation.
Why it is better to follow these advices.
Implementation quite often can change but abstraction rarely changes.
Easy to switch from one implementation to another one.
You follow SOLID principles
P.s. I hope I could answer to your question. Whether you have feel free to ask it on comments
I am new to wicket. There is a confusion in Model, ModelObject defaultModel, genericModel. I need to know the difference between ModelObject and Model, defaultModel and genericModel. Please help me to clear about it.
defaultModel[Object] and genericModel[Object] is the same object, behind the scenes.
Each Component has an IModel and this model brings an java.lang.Object inside. This is the defaultModelObject.
Some specializations of Component, like FormComponent, Form, GenericPanel, etc. use Java generics to make the user code more concrete. For this Wicket uses genericModel[Object] - it is the same Object but casted to its actual type. The casting is in Wicket code, not in the application code.
I have the following situation. There are two combos on my UI form, one shows the list of vegetables and another one shows a list of fruits.
In my supporting view class I'd like to declare such methods:
#UiFactory
SimpleComboBox<Vegetable> createVegetablesCombo() {
return vegetables;
}
#UiFactory
SimpleComboBox<Fruit> createFruitsCombo() {
return fruits;
}
But it seems that GWT does not recognize parameterized returned types... Every time I get an error:
ERROR: Duplicate factory in class VegetablesAndFruitsView for type SimpleComboBox.
Is it possible to handle this case? Is there a good example of multiple comboboxes on one UI form?
From the perspective of Java (not GWT, not UiBinder, but the Java language itself) at runtime there isn't a difference between SimpleComboBox<Vegetable> and SimpleComboBox<Fruit>. That said, this error is coming from UiBinder's code generation, which is looking for all #UiConstructor methods, and using them to build things.
So what does UiBinder have to work with? From the UiBinder XML, there is no generics. The only way UiBinder could get this right is if you happen to have included a #UiField entry in your class with the proper generics. This then would require #UiField annotations any time there might be ambiguity like this, something GWT doesn't presently do.
What are you trying to achieve in this? You are returning a field (either vegetables or fruits) - why isn't that field just tagged as #UiField(provided=true)? Then, whatever wiring you are doing to assign those fields can be used from UiBinder without the need for the #UiConstructor methods at all.
#UiField(provided=true)
SimpleComboBox<Fruit> fruits;
//...
public MyWidget() {
fruits = new SimpleComboBox<Fruit>(...);
binder.createAndBind(this);
}
...
<form:SimpleComboBox ui:field="fruits" />
If this is just an over-simplification, and you actually plan on creating new objects in those methods, then consider passing an argument in, something like String type, and returning a different SimpleComboBox<?> based on the value. From your UiBinder xml, you could create the right thing like this:
<field:SimpleComboBox type="fruit" />
ConfigProperty.idPropertyMap is filled on the server side. (verified via log output)
Accessing it on the client side shows it's empty. :-( (verified via log output)
Is this some default behaviour? (I don't think so)
Is the problem maybe related to the inner class ConfigProperty.IdPropertyMap, java.util.HashMap usage, serialization or some field access modifier issue?
Thanks for your help
// the transfer object
public class ConfigProperty implements IsSerializable, Comparable {
...
static public class IdPropertyMap extends HashMap
implements IsSerializable
{
...
}
protected static IdPropertyMap idPropertyMap = new IdPropertyMap();
...
}
// the server service
public class ManagerServiceImpl extends RemoteServiceServlet implements
ManagerService
{
...
public IdPropertyMap getConfigProps(String timeToken)
throws ConfiguratorException
{
...
}
}
added from below after some good answers (thanks!):
answer bottom line: static field sync is not implemented/supported currently. someone/me would have to file a feature request
just my perspective (an fallen-in-love newby to GWT :-)):
I understand pretty good (not perfect! ;-)) the possible implications of "global" variable syncing (a dependency graph or usage of annotations could be useful).
But from a new (otherwise experienced Java EE/web) user it looks like this:
you create some myapp.shared.dto.MyClass class (dto = data transfer objects)
you add some static fields in it that just represent collections of those objects (and maybe some other DTOs)
you can also do this on the client side and all the other static methods work as well
only thing not working is synchronization (which is not sooo bad in the first place)
BUT: some provided annotation, let's say #Transfer static Collection<MyClass> myObjList; would be handy, since I seem to know the impact and benefits that this would bring.
In my case it's rather simple since the client is more static, but would like to have this data without explicitely implementing it if the GWT framework could do it.
static variables are purely class variable It has nothing to do with individual instances. serialization applies only to object.
So ,your are getting always empty a ConfigProperty.idPropertyMap
The idea of RPC is not that you can act as though the client and the server are exactly the same JVM, but that they can share the objects that you pass over the wire. To send a static field over the wire, from the server to the client, the object stored in that field must be returned from the RPC method.
Static properties are not serialized and sent over the wire, because they do not belong to a single object, but to the class itself.
public class MyData implements Serializable {
protected String name;//sent over the wire, each MyData has its own name
protected String key;
protected static String masterKey;//All objects on the server or client
// share this, it cannot be sent over RPC. Instead, another RPC method
// could access it
}
Note, however, that it will only be that one instance which will be shared - if something else on the server changes that field, all clients which have asked for a copy will need to be updated
GWT.create() is the reflection equivalent in GWT,
But it take only class literals, not fully qualified String for the Class name.
How do i dynamically create classes with Strings using GWT.create()?
Its not possible according to many GWT forum posts but how is it being done in frameworks like Rocket-GWT (http://code.google.com/p/rocket-gwt/wiki/Ioc) and Gwittir (http://code.google.com/p/gwittir/wiki/Introspection)
It is possible, albeit tricky. Here are the gory details:
If you only think as GWT as a straight Java to JS, it would not work. However, if you consider Generators - Special classes with your GWT compiler Compiles and Executes during compilation, it is possible. Thus, you can generate java source while even compiling.
I had this need today - Our system deals with Dynamic resources off a Service, ending into a String and a need for a class. Here is the solutuion I've came up with - btw, it works under hosted, IE and Firefox.
Create a GWT Module declaring:
A source path
A Generator (which should be kept OUTSIDE the package of the GWT Module source path)
An interface replacement (it will inject the Generated class instead of the interface)
Inside that package, create a Marker interface (i call that Constructable). The Generator will lookup for that Marker
Create a base abstract class to hold that factory. I do this in order to ease on the generated source code
Declare that module inheriting on your Application.gwt.xml
Some notes:
Key to understanding is around the concept of generators;
In order to ease, the Abstract base class came in handy.
Also, understand that there is name mandling into the generated .js source and even the generated Java source
Remember the Generator outputs java files
GWT.create needs some reference to the .class file. Your generator output might do that, as long as it is referenced somehow from your application (check Application.gwt.xml inherits your module, which also replaces an interface with the generator your Application.gwt.xml declares)
Wrap the GWT.create call inside a factory method/singleton, and also under GWT.isClient()
It is a very good idea to also wrap your code-class-loading-calls around a GWT.runAsync, as it might need to trigger a module load. This is VERY important.
I hope to post the source code soon. Cross your fingers. :)
Brian,
The problem is GWT.create doen't know how to pick up the right implementation for your abstract class
I had the similar problem with the new GWT MVP coding style
( see GWT MVP documentation )
When I called:
ClientFactory clientFactory = GWT.create(ClientFactory.class);
I was getting the same error:
Deferred binding result type 'com.test.mywebapp.client.ClientFactory' should not be abstract
All I had to do was to go add the following lines to my MyWebapp.gwt.xml file:
<!-- Use ClientFactoryImpl by default -->
<replace-with class="com.test.mywebapp.client.ClientFactoryImpl">
<when-type-is class="com.test.mywebapp.client.ClientFactory"/>
</replace-with>
Then it works like a charm
I ran into this today and figured out a solution. The questioner is essentially wanting to write a method such as:
public <T extends MyInterface> T create(Class<T> clz) {
return (T)GWT.create(clz);
}
Here MyInterface is simply a marker interface to define the range of classes I want to be able to dynamically generate. If you try to code the above, you will get an error. The trick is to define an "instantiator" such as:
public interface Instantiator {
public <T extends MyInterface> T create(Class<T> clz);
}
Now define a GWT deferred binding generator that returns an instance of the above. In the generator, query the TypeOracle to get all types of MyInterface and generate implementations for them just as you would for any other type:
e.g:
public class InstantiatorGenerator extends Generator {
public String generate(...) {
TypeOracle typeOracle = context.getTypeOracle();
JClassType myTYpe= typeOracle.findType(MyInterface.class.getName());
JClassType[] types = typeOracle.getTypes();
List<JClassType> myInterfaceTypes = Collections.createArrayList();
// Collect all my interface types.
for (JClassType type : types) {
if (type.isInterface() != null && type.isAssignableTo(myType)
&& type.equals(myType) == false) {
myInterfaceTypes.add(type);
}
for (JClassType nestedType : type.getNestedTypes()) {
if (nestedType.isInterface() != null && nestedType.isAssignableTo(myType)
&& nestedType.equals(myTYpe) == false) {
myInterfaceTypes.add(nestedType);
}
}
}
for (JClassType jClassType : myInterfaceTypes) {
MyInterfaceGenerator generator = new MyInterfaceGenerator();
generator.generate(logger, context, jClassType.getQualifiedSourceName());
}
}
// Other instantiator generation code for if () else if () .. constructs as
// explained below.
}
The MyIntefaceGenerator class is just like any other deferred binding generator. Except you call it directly within the above generator instead of via GWT.create. Once the generation of all known sub-types of MyInterface is done (when generating sub-types of MyInterface in the generator, make sure to make the classname have a unique pattern, such as MyInterface.class.getName() + "_MySpecialImpl"), simply create the Instantiator by again iterating through all known subtypes of MyInterface and creating a bunch of
if (clz.getName().equals(MySpecialDerivativeOfMyInterface)) { return (T) new MySpecialDerivativeOfMyInterface_MySpecialImpl();}
style of code. Lastly throw an exception so you can return a value in all cases.
Now where you'd call GWT.create(clz); instead do the following:
private static final Instantiator instantiator = GWT.create(Instantiator.class);
...
return instantiator.create(clz);
Also note that in your GWT module xml, you'll only define a generator for Instantiator, not for MyInterface generators:
<generate-with class="package.rebind.InstantiatorGenerator">
<when-type-assignable class="package.impl.Instantiator" />
</generate-with>
Bingo!
What exactly is the question - i am guessing you wish to pass parameters in addition to the class literal to a generator.
As you probably already know the class literal passed to GWT.create() is mostly a selector so that GWT can pick and execute a generator which in the end spits out a class. The easist way to pass a parameter to the generator is to use annotations in an interface and pass the interface.class to GWT.create(). Note of course the interface/class must extend the class literal passed into GWT.create().
class Selector{
}
#Annotation("string parameter...")
class WithParameter extends Selector{}
Selector instance = GWT.create( WithParameter.class )
Everything is possible..although may be difficult or even useless. As Jan has mentioned you should use a generator to do that. Basically you can create your interface the generator code which takes that interface and compile at creation time and gives you back the instance. An example could be:
//A marker interface
public interface Instantiable {
}
//What you will put in GWT.create
public interface ReflectionService {
public Instantiable newInstance(String className);
}
//gwt.xml, basically when GWT.create finds reflectionservice, use reflection generator
<generate-with class="...ReflectionGenerator" >
<when-type-assignable class="...ReflectionService" />
</generate-with>
//In not a client package
public class ReflectionGenerator extends Generator{
...
}
//A class you may instantiate
public class foo implements Instantiable{
}
//And in this way
ReflectionService service = GWT.create(ReflectionService.class);
service.newInstance("foo");
All you need to know is how to do the generator. I may tell you that at the end what you do in the generator is to create Java code in this fashion:
if ("clase1".equals(className)) return new clase1();
else if ("clase2".equals(className)) return new clase2();
...
At the final I thought, common I can do that by hand in a kind of InstanceFactory...
Best Regards
I was able to do what I think you're trying to do which is load a class and bind it to an event dynamically; I used a Generator to dynamically link the class to the event. I don't recommend it but here's an example if it helps:
http://francisshanahan.com/index.php/2010/a-simple-gwt-generator-example/
Not having looked through the code of rocket/gwittir (which you ought to do if you want to find out how they did it, it is opensource after all), i can only guess that they employ deferred binding in such a way that during compile time, they work out all calls to reflection, and statically generate all the code required to implement those call. So during run-time, you cant do different ones.
What you're trying to do is not possible in GWT.
While GWT does a good job of emulating Java at compile time the runtime is of course completely different. Most reflection is unsupported and it is not possible to generate or dynamically load classes at runtime.
I had a brief look into code for Gwittir and I think they are doing their "reflection stuff" at compile time. Here: http://code.google.com/p/gwittir/source/browse/trunk/gwittir-core/src/main/java/com/totsp/gwittir/rebind/beans/IntrospectorGenerator.java
You might be able to avoid the whole issue by doing it on the server side. Say with a service
witch takes String and returns some sort of a serializable super type.
On the server side you can do
return (MySerializableType)Class.forName("className").newInstance();
Depending on your circumstances it might not be a big performance bottleneck.