why we need cross validation in multiSVM method for image classification? - matlab

I am new to image classification, currently working on SVM(support Vector Machine) method for classifying four groups of images by multisvm function, my algorithm every time the training and testing data are randomly selected and the performance is varies at every time. Some one suggested to do cross validation i did not understand why we need cross validation and what is the main purpose of this? . My actual data set consist training matrix size 28×40000 and testing matrix size 17×40000. how to do cross validation by this data set help me. thanks in advance .

Cross validation is used to select your model. The out-of-sample error can be estimated from your validation error. As a result, you would like to select the model with the least validation error. Here the model refers to the features you want to use, and of more importance, the gamma and C in your SVM. After cross validation, you will use the selected gamma and C with the least average validation error to train the whole training data.
You may also need to estimate the performance of your features and parameters to avoid both high-bias and high-variance. Whether your model suffers underfitting or overfitting can be observed from both in-sample-error and validation error.
Ideally 10-fold is often used for cross validation.

I'm not familiar with multiSVM but you may want to check out libSVM, it is a popular, free SVM library with support for a number of different programming languages.
Here they describe cross validation briefly. It is a way to avoid over-fitting the model by breaking up the training data into sub groups. In this way you can find a model (defined by a set of parameters) which fits both sub groups optimally.
For example, in the following picture they plot the validation accuracy contours for parameterized gamma and C values which are used to define the model. From this contour plot you can tell that the heuristically optimal values (from those tested) are those that give an accuracy closer to 84 instead of 81.
Refer to this link for more detailed information on cross-validation.

You always need to cross-validate your experiments in order to guarantee a correct scientific approach. For instance, if you don't cross-validate, the results you read (such as accuracy) might be highly biased by your test set. In an extreme case, your training step might have been very weak (in terms of fitting data) and your test step might have been very good. This applies to ALL machine learning and optimization experiments, not only SVMs.
To avoid such problems just divide your initial dataset in two (for instance), then train in the first set and test in the second, and repeat the process invesely, training in the second and testing in the first. This will guarantee that any biases to the data are visible to you. As someone suggested, you can perform this with even further division: 10-fold cross-validation, means dividing your data set in 10 parts, then training in 9 and testing in 1, then repeating the process until you have tested in all parts.

Related

Is Cross Validation enough to ensure that there is no Overfitting in a classification algorithm?

I have a data set with 45 observations for one class and 55 observations for another class. Moreover, I am using 4 different features which were previously chosen by using a Feature Selection filter though the results of this procedure were somewhat strange..
On the other hand, I am using cross validation and getting good accuracy results (75% to 85%) from different classifiers since I'm using the classificationLearner on Matlab. Would this ensure that there is no overfitting? Or there might still be a chance for this? How can I assure that there is no overfitting?
That really depends on your training data set that you have available. If data that is available to you isn't representative enough, you will not get a good model regardless of the methods you use for training and validation.
Having that in mind, if you are sure your data is representative (has the same distribution of values for any subset of "important" attributes as the the global set of all data) than cross validation is good enough to rely on.

K nearest neighbour validation performance

I am using knn to do classification for a telecom problem. I splitted my data into 70% training and 30% validation. While the knn classifier is able to catch over 80% in 2 deciles in training, its performance in validation sample is as good as random 45 degree line. I am surprised how does KNN work that the model performance in training and validation are so different.
Any pointers ?
Reasonable pointers are hardly possible without more details. The behavior of your KNN depends on several aspects:
The parameter K defining the neighbors. If it is set to K=1, for example, you will get no training error at all, this showing that the consideration of training-to-validation-error may not be justified.
The parameter K is often found using cross validation. I would suggest you to do this as well.
The distance metric. Which function are you using, are there different units, length scales, etc.?
The noise of your data, the size of your data ... -- there simply exist data sets which are hard to describe.
By the way: can you tell what kind of data you want to describe, and, if possible, also provide some examples or show some scatter plot (data and your result)?

Neural networks: classification using Encog

I'm trying to get started using neural networks for a classification problem. I chose to use the Encog 3.x library as I'm working on the JVM (in Scala). Please let me know if this problem is better handled by another library.
I've been using resilient backpropagation. I have 1 hidden layer, and e.g. 3 output neurons, one for each of the 3 target categories. So ideal outputs are either 1/0/0, 0/1/0 or 0/0/1. Now, the problem is that the training tries to minimize the error, e.g. turn 0.6/0.2/0.2 into 0.8/0.1/0.1 if the ideal output is 1/0/0. But since I'm picking the highest value as the predicted category, this doesn't matter for me, and I'd want the training to spend more effort in actually reducing the number of wrong predictions.
So I learnt that I should use a softmax function as the output (although it is unclear to me if this becomes a 4th layer or I should just replace the activation function of the 3rd layer with softmax), and then have the training reduce the cross entropy. Now I think that this cross entropy needs to be calculated either over the entire network or over the entire output layer, but the ErrorFunction that one can customize calculates the error on a neuron-by-neuron basis (reads array of ideal inputs and actual inputs, writes array of error values). So how does one actually do cross entropy minimization using Encog (or which other JVM-based library should I choose)?
I'm also working with Encog, but in Java, though I don't think it makes a real difference. I have similar problem and as far as I know you have to write your own function that minimizes cross entropy.
And as I understand it, softmax should just replace your 3rd layer.

Accuracy of Neural network Output-Matlab ANN Toolbox

I'm relatively new to Matlab ANN Toolbox. I am training the NN with pattern recognition and target matrix of 3x8670 containing 1s and 0s, using one hidden layer, 40 neurons and the rest with default settings. When I get the simulated output for new set of inputs, then the values are around 0 and 1. I then arrange them in descending order and choose a fixed number(which is known to me) out of 8670 observations to be 1 and rest to be zero.
Every time I run the program, the first row of the simulated output always has close to 100% accuracy and the following rows dont exhibit the same kind of accuracy.
Is there a logical explanation in general? I understand that answering this query conclusively might require the understanding of program and problem, but its made of of several functions to clearly explain. Can I make some changes in the training to get consistence output?
If you have any suggestions please share it with me.
Thanks,
Nishant
Your problem statement is not clear for me. For example, what you mean by: "I then arrange them in descending order and choose a fixed number ..."
As I understand, you did not get appropriate output from your NN as compared to the real target. I mean, your output from NN is difference than target. If so, there are different possibilities which should be considered:
How do you divide training/test/validation sets for training phase? The most division should be assigned to training (around 75%) and rest for test/validation.
How is your training data set? Can it support most scenarios as you expected? If your trained data set is not somewhat similar to your test data sets (e.g., you have some new records/samples in the test data set which had not (near) appear in the training phase, it explains as 'outlier' and NN cannot work efficiently with these types of samples, so you need clustering approach not NN classification approach), your results from NN is out-of-range and NN cannot provide ideal accuracy as you need. NN is good for those data set training, where there is no very difference between training and test data sets. Otherwise, NN is not appropriate.
Sometimes you have an appropriate training data set, but the problem is training itself. In this condition, you need other types of NN, because feed-forward NNs such as MLP cannot work with compacted and not well-separated regions of data very well. You need strong function approximation such as RBF and SVM.

Genetic algorithm for classification

I am trying to solve classification problem using Matlab GPTIPS framework.
I managed to build reasonable data representation and fitness function so far and got an average accuracy per class near 65%.
What I need now is some help with two difficulties:
My data is biased. Basically I am solving binary classification problem and only 20% of data belongs to class 1, while other 80% belong to class 0. I used accuracy of prediction as my fitness function at first, but it was really bad. The best I have now is
Fitness = 0.5*(PositivePredictiveValue + NegativePredictiveValue) - const*ComplexityOfSolution
Please, advize, how can I improve my function to make correction for data bias.
Second problem is overfitting. I divided my data into three parts: training (70%), testing (20%), validation (10%). I train each chromosome on training set, then evaluate it's fitness function on testing set. This routine allows me to reach fitness of 0.82 on my test data for the best individual in population. But same individual's result on validation data is only 60%.
I added validation check for best individual each time before new population is generated. Then I compare fitness on validation set with fitness on test set. If difference is more then 5%, then I increase penalty for solution complexity in my fitness function. But it didn't help.
I could also try to evaluate all individuals with validation set during each generation, and simply remove overfitted ones. But then I don't see any difference between my test and validation data. What else can be done here?
UPDATE:
For my second question I've found great article "Experiments on Controlling Overtting
in Genetic Programming" Along with some article authors' ideas on dealing with overfitting in GP it has impressive review with a lot of references to many different approaches to the issue. Now I have a lot of new ideas I can try for my problem.
Unfortunately, still cant' find anything on selecting a proper fitness function which will take into account unbalanced class proportions in my data.
65% accuracy is very bad when the baseline (classify everything as the class with most samples) would be 80%. You need to achieve at least baseline classification in order to have a better model than the naive one.
I would not penalize complexity. Rather limit the tree size (if possible). You could identify simpler models during the run, like storing a pareto front of models with quality and complexity as its two fitness values.
In HeuristicLab we have integrated GP based classification that can do these things. There are several options: You can choose to use MSE for classification or R2. In the latest trunk build there is also an evaluator to optimize accuracy directly (exactly speaking it optimizes the classification penalties). Optimizing MSE means it assigns each class a value (1, 2, 3,...) and tries to minimize mean squared error from that value. This may not seem optimal at first, but works. Optimizing accuracy directly may lead to faster overfitting. There is also a formula simplifier which allows you to prune and shrink your formula (and view the effects of that).
Also, does it need to be GP? Have you tried Random Forest Classification or Support Vector Machines as well? RF are pretty fast and work pretty well usually.