Increasing FD_SETSIZE - select

I need to increase the FD_SETSIZE value from 1024 to 4096. I know it'd be better to use poll()/epoll() but I want to understand what are pros/cons. The main question is: have I to recompile glibc? I read several thread where the change of .h after changing FD_SETSIZE works recompiling only the user application. Reading the glibc code (and the kernel too), actually it seems to me that if I want to use select(), FD_* macro and so on, I have to recompile all because the size of fd_set is changed. At this point I have to recompile all not only my application because if in the system there is an another "common" application that uses select and friends, I could have problem. Am I right?

Technically, you do not have to recompile glibc. It would be sufficient to use come up with your own version of <sys/select.h> that has a larger fd_set_t, but is otherwise compatible. It will magically work because the select function receives the largest file descriptor (plus one), so it can figure out the set sizes. The other functions and macros are either inline or do not care about the actual set size.
It's still a bad idea, so you really should be using poll or epoll instead.
In the past, some libcs supported defining FD_SETSIZE before including <sys/select.h> to obtain a larger set size, but I don't think support for that was ever part of mainline glibc.

Related

Confusions about address binding

Compile time. If you know at compile time where the process will reside
in memory, then absolute code can be generated. For example, if you know
that a user process will reside starting at location R, then the generated
compiler code will start at that location and extend up from there. If, at
some later time, the starting location changes, then it will be necessary
to recompile this code. The MS-DOS .COM-format programs are bound at
compile time.
What can be the reason of the starting location to change? Can it be
because of context switching/swapping ?
Does absolute code means binary code?
Load time. If it is not known at compile time where the process will reside
in memory, then the compiler must generate relocatable code. In this case,
final binding is delayed until load time. If the starting address changes, we
need only reload the user code to incorporate this changed value.
How is relocatable code different from absolute code? Does it contain info about base,limit and relocation register?
How is reloading more efficient then recompiling as they mentioned only reload means no recompiling only reload?
Execution time. If the process can be moved during its execution from
one memory segment to another, then binding must be delayed until run
time. .
Why it may be needed to move a process during it's execution?
The compile-time and load-time address-binding methods generate
identical logical and physical addresses. However, the execution-time address-binding scheme results in differing logical and physical addresses.
How compile and load-time methods generate identical logical and physical addresses?
To begin with, I would find a better source for your information. What you have is very poor.
What can be the reason of the starting location to change? Can it be because of context switching/swapping ?
You change the code or need the code to be loaded at a different location in memory.
Does absolute code means binary code?
No. They are independent concepts.
How is relocatable code different from absolute code? Does it contain info about base,limit and relocation register?
Relocatable code uses relative addresses, generally relative to the program counter.
(Base limit and relocation registers would be a system specific ocncept).
How is reloading more efficient then recompiling as they mentioned only reload means no recompiling only reload?
Let's say two different programs use the same dynamic library. They made need to have loaded at different locations in memory. It's not an efficiency issue.
Why it may be needed to move a process during it's execution?
This is what was done in ye olde days before virtual memory. To my knowledge no one does this any more.
How compile and load-time methods generate identical logical and physical addresses?
I don't know what the &^54 they are talking about. That statement makes no sense.
Dynamic libraries (.dll .so) are relocatable, because they might appear at different adresses in different applications, but in order to save memory, the operating system only has one copy in physical memory (virtual memory is great), and each application has read only access.
Same happens for applications that are relocatable. For security, it is also wize that the addresses are random - some remote attacks are slighty harder

Why are there ioctl calls in socket.c?

Trying to understand why there are ioctl calls in socket.c ? I can see a modified kernel that I am using, it has some ioctl calls which load in the required modules when the calls are made.
I was wondering why these calls ended up in socket.c ? Isn't socket kind of not-a-device and ioctls are primarily used for device.
Talking about 2.6.32.0 heavily modified kernel here.
ioctl suffers from its historic name. While originally developed to perform i/o controls on devices, it has a generic enough construct that it may be used for arbitrary service requests to the kernel in context of a file descriptor. A file descriptor is an opaque value (just an int) provided by the kernel that can be associated with anything.
Now if you treat a file descriptor and think of things as files, which most *nix constructs do, open/read/write/close isn't enough. What if you want to label a file (rename)? what if you want to wait for a file to become available (ioctl)? what if you want to terminate everything if a file closes (termios)? all the "meta" operations that don't make sense in the core read/write context are lumped under ioctls; fctls; etc. unless they are so frequently used that they deserve their own system call (e.g. flock(2) functionality in BSD4.2)

Looking for the best equivalents of prefetch instructions for ia32, ia64, amd64, and powerpc

I'm looking at some slightly confused code that's attempted a platform abstraction of prefetch instructions, using various compiler builtins. It appears to be based on powerpc semantics initially, with Read and Write prefetch variations using dcbt and dcbtst respectively (both of these passing TH=0 in the new optional stream opcode).
On ia64 platforms we've got for read:
__lfetch(__lfhint_nt1, pTouch)
wherease for write:
__lfetch_excl(__lfhint_nt1, pTouch)
This (read vs. write prefetching) appears to match the powerpc semantics fairly well (with the exception that ia64 allows for a temporal hint).
Somewhat curiously the ia32/amd64 code in question is using
prefetchnta
Not
prefetchnt1
as it would if that code were to be consistent with the ia64 implementations (#ifdef variations of that in our code for our (still live) hpipf port and our now dead windows and linux ia64 ports).
Since we are building with the intel compiler I should be able to many of our ia32/amd64 platforms consistent by switching to the xmmintrin.h builtins:
_mm_prefetch( (char *)pTouch, _MM_HINT_NTA )
_mm_prefetch( (char *)pTouch, _MM_HINT_T1 )
... provided I can figure out what temporal hint should be used.
Questions:
Are there read vs. write ia32/amd64 prefetch instructions? I don't see any in the instruction set reference.
Would one of the nt1, nt2, nta temporal variations be preferred for read vs. write prefetching?
Any idea if there would have been a good reason to use the NTA temporal hint on ia32/amd64, yet T1 on ia64?
Are there read vs. write ia32/amd64 prefetch instructions? I don't see any in the instruction set reference.
Some systems support the prefetchw instructions for writes
Would one of the nt1, nt2, nta temporal variations be preferred for read vs. write prefetching?
If the line is exclusively used by the calling thread, it shouldn't matter how you bring the line, both reads and writes would be able to use it. The benefit for prefetchw mentioned above is that it will bring the line and give you ownership on it, which may take a while if the line was also used by another core. The hint level on the other hand is orthogonal with the MESI states, and only affects how long would the prefetched line survive. This matters if you prefetch long ahead of the actual access and don't want to prefetch to get lost in that duration, or alternatively - prefetch right before the access, and don't want the prefetches to thrash your cache too much.
Any idea if there would have been a good reason to use the NTA temporal hint on ia32/amd64, yet T1 on ia64?
Just speculating - perhaps the larger caches and aggressive memory BW are more vulnerable to bad prefetching and you'd want to reduce the impact through the non-temporal hint. Consider that your prefetcher is suddenly set loose to fetch anything it can, you'd end up swamped in junk prefetches that would through away lots of useful cachelines. The NTA hint makes them overrun each other, leaving the rest undamaged.
Of course this may also be just a bug, I can't tell for sure, only whoever developed the compiler, but it might make sense for the reason above.
The best resource I could find on x86 prefetching hint types was the good ol' article What Every Programmer Should Know About Memory.
For the most part on x86 there aren't different instructions for read and write prefetches. The exceptions seem to be those that are non-temporal aligned, where a write can bypass the cache but as far as I can tell, a read will always get cached.
It's going to be hard to backtrack through why the earlier code owners used one hint and not the other on a certain architecture. They could be making assumptions about how much cache is available on processors in that family, typical working set sizes for binaries there, long term control flow patterns, etc... and there's no telling how much any of those assumptions were backed up with good reasoning or data. From the limited background here I think you'd be justified in taking the approach that makes the most sense for the platform you're developing on now, regardless what was done on other platforms. This is especially true when you consider articles like this one, which is not the only context where I've heard that it's really, really hard to get any performance gain at all with software prefetches.
Are there any more details known up front, like typical cache miss ratios when using this code, or how much prefetches are expected to help?

How to determine SSE prefetch instruction size?

I am working with code which contains inline assembly for SSE prefetch instructions. A preprocessor constant determines whether the instructions for 32-, 64- or 128-bye prefetches are used. The application is used on a wide variety of platforms, and so far I have had to investigate in each case which is the best option for the given CPU. I understand that this is the cache line size. Is this information obtainable automatically? It doesn't seem to be explicitly present in /proc/cpuinfo.
I think your question is related to this question or this one. I think it is clear that - unless you can rely on a OS or library-function - you will want to use the CPUID instruction, but the question then becomes exactly what information you are looking for. - And of course, AMD's and Intel's implementations don't need to agree. This page suggests using Cpuid.1.EBX[15:8] (i.e., BH) for finding out on Intel and function 80000005h on AMD. In addition, on Intel, CPUID.2... seems to contain the relevant information, but it looks like a real pain to parse out the desired information.
I think, from what I've read, both AMD and Intel CPUID instructions will support CPUID.1.EBX[15:8], which returns the size of one cache line in QUADWORDs as used by the CLFLUSH instruction (which isn't present on all processors, so I don't know whether you'll always find something there). So, after executing CPUID.1, you'd have to multiply BH by 8 to get the cache line size in bytes. This hinges on my implicit assumption (please can anyone say whether it is really valid?) that the definition of one cache line size is always the same for CLFLUSH and PREFETCHh instructions.
Also, Intel's manuals states that PREFETCHh is only a hint, but that, if it prefetches anything, it will always be a minimum of 32 bytes.
EDIT1:
Another useful resource (even if not directly answering your question) for the optimised use of PREFETCHh is Intel's optimisation manual here.

The stack size used in kernel development

I'm developing an operating system and rather than programming the kernel, I'm designing the kernel. This operating system is targeted at the x86 architecture and my target is for modern computers. The estimated number of required RAM is 256Mb or more.
What is a good size to make the stack for each thread run on the system? Should I try to design the system in such a way that the stack can be extended automatically if the maximum length is reached?
I think if I remember correctly that a page in RAM is 4k or 4096 bytes and that just doesn't seem like a lot to me. I can definitely see times, especially when using lots of recursion, that I would want to have more than 1000 integars in RAM at once. Now, the real solution would be to have the program doing this by using malloc and manage its own memory resources, but really I would like to know the user opinion on this.
Is 4k big enough for a stack with modern computer programs? Should the stack be bigger than that? Should the stack be auto-expanding to accommodate any types of sizes? I'm interested in this both from a practical developer's standpoint and a security standpoint.
Is 4k too big for a stack? Considering normal program execution, especially from the point of view of classes in C++, I notice that good source code tends to malloc/new the data it needs when classes are created, to minimize the data being thrown around in a function call.
What I haven't even gotten into is the size of the processor's cache memory. Ideally, I think the stack would reside in the cache to speed things up and I'm not sure if I need to achieve this, or if the processor can handle it for me. I was just planning on using regular boring old RAM for testing purposes. I can't decide. What are the options?
Stack size depends on what your threads are doing. My advice:
make the stack size a parameter at thread creation time (different threads will do different things, and hence will need different stack sizes)
provide a reasonable default for those who don't want to be bothered with specifying a stack size (4K appeals to the control freak in me, as it will cause the stack-profligate to, er, get the signal pretty quickly)
consider how you will detect and deal with stack overflow. Detection can be tricky. You can put guard pages--empty--at the ends of your stack, and that will generally work. But you are relying on the behavior of the Bad Thread not to leap over that moat and start polluting what lays beyond. Generally that won't happen...but then, that's what makes the really tough bugs tough. An airtight mechanism involves hacking your compiler to generate stack checking code. As for dealing with a stack overflow, you will need a dedicated stack somewhere else on which the offending thread (or its guardian angel, whoever you decide that is--you're the OS designer, after all) will run.
I would strongly recommend marking the ends of your stack with a distinctive pattern, so that when your threads run over the ends (and they always do), you can at least go in post-mortem and see that something did in fact run off its stack. A page of 0xDEADBEEF or something like that is handy.
By the way, x86 page sizes are generally 4k, but they do not have to be. You can go with a 64k size or even larger. The usual reason for larger pages is to avoid TLB misses. Again, I would make it a kernel configuration or run-time parameter.
Search for KERNEL_STACK_SIZE in linux kernel source code and you will find that it is very much architecture dependent - PAGE_SIZE, or 2*PAGE_SIZE etc (below is just some results - many intermediate output are deleted).
./arch/cris/include/asm/processor.h:
#define KERNEL_STACK_SIZE PAGE_SIZE
./arch/ia64/include/asm/ptrace.h:
# define KERNEL_STACK_SIZE_ORDER 3
# define KERNEL_STACK_SIZE_ORDER 2
# define KERNEL_STACK_SIZE_ORDER 1
# define KERNEL_STACK_SIZE_ORDER 0
#define IA64_STK_OFFSET ((1 << KERNEL_STACK_SIZE_ORDER)*PAGE_SIZE)
#define KERNEL_STACK_SIZE IA64_STK_OFFSET
./arch/ia64/include/asm/mca.h:
u64 mca_stack[KERNEL_STACK_SIZE/8];
u64 init_stack[KERNEL_STACK_SIZE/8];
./arch/ia64/include/asm/thread_info.h:
#define THREAD_SIZE KERNEL_STACK_SIZE
./arch/ia64/include/asm/mca_asm.h:
#define MCA_PT_REGS_OFFSET ALIGN16(KERNEL_STACK_SIZE-IA64_PT_REGS_SIZE)
./arch/parisc/include/asm/processor.h:
#define KERNEL_STACK_SIZE (4*PAGE_SIZE)
./arch/xtensa/include/asm/ptrace.h:
#define KERNEL_STACK_SIZE (2 * PAGE_SIZE)
./arch/microblaze/include/asm/processor.h:
# define KERNEL_STACK_SIZE 0x2000
I'll throw my two cents in to get the ball rolling:
I'm not sure what a "typical" stack size would be. I would guess maybe 8 KB per thread, and if a thread exceeds this amount, just throw an exception. However, according to this, Windows has a default reserved stack size of 1MB per thread, but it isn't committed all at once (pages are committed as they are needed). Additionally, you can request a different stack size for a given EXE at compile-time with a compiler directive. Not sure what Linux does, but I've seen references to 4 KB stacks (although I think this can be changed when you compile the kernel and I'm not sure what the default stack size is...)
This ties in with the first point. You probably want a fixed limit on how much stack each thread can get. Thus, you probably don't want to automatically allocate more stack space every time a thread exceeds its current stack space, because a buggy program that gets stuck in an infinite recursion is going to eat up all available memory.
If you are using virtual memory, you do want to make the stack growable. Forcing static allocation of stack sized, like is common in user-level threading like Qthreads and Windows Fibers is a mess. Hard to use, easy to crash. All modern OSes do grow the stack dynamically, I think usually by having a write-protected guard page or two below the current stack pointer. Writes there then tell the OS that the stack has stepped below its allocated space, and you allocate a new guard page below that and make the page that got hit writable. As long as no single function allocates more than a page of data, this works fine. Or you can use two or four guard pages to allow larger stack frames.
If you want a way to control stack size and your goal is a really controlled and efficient environment, but do not care about programming in the same style as Linux etc., go for a single-shot execution model where a task is started each time a relevant event is detected, runs to completion, and then stores any persistent data in its task data structure. In this way, all threads can share a single stack. Used in many slim real-time operating systems for automotive control and similar.
Why not make the stack size a configurable item, either stored with the program or specified when a process creates another process?
There are any number of ways you can make this configurable.
There's a guideline that states "0, 1 or n", meaning you should allow zero, one or any number (limited by other constraints such as memory) of an object - this applies to sizes of objects as well.