How does this Lisp code work? [closed] - lisp

It's difficult to tell what is being asked here. This question is ambiguous, vague, incomplete, overly broad, or rhetorical and cannot be reasonably answered in its current form. For help clarifying this question so that it can be reopened, visit the help center.
Closed 10 years ago.
This function below checks for a number in a list. For example, here it is looking for 12. If 12 is there, it returns T (true) and if it is not there, it returns NIL. I am trying to understand the syntax, but it is kind of confusing me. Is there anyone who can help and describe what this code does in simple english?
1> (defun an (&rest n)
(block nil
(setq x (car n))
(setq n (cdr n))
(loop (< x 100)
(setq n (cdr n))
(if (eq x 2) (return (eq (car n) 12))) (setq x (1- x)))))
AN
2> (an 2 3 4 5 66 7)
NIL
3> (an 2 3 12 3 4 5)
T
Additional question: how does &rest work or what does it do?

If you are using SLIME you could do M-xslime-macroexpand-all when the point is on the last parenthesis of the block form. You would get something like this:
(BLOCK NIL
(SETQ X (CAR N)) ; save the first element in X, while declaring
; a special variable by that name
(SETQ N (CDR N)) ; set N to the second cons of the list
(BLOCK NIL
(TAGBODY
#:G892
(PROGN
(< X 100) ; Useless, has no impact on your code
(SETQ N (CDR N)) ; set N to the third cons of the list
(IF (EQ X 2)
(RETURN-FROM NIL (EQ (CAR N) 12))) ; return from the innermost block NIL
; however, since there's no more code in the
; outermost block NIL, this will return from
; it too.
(SETQ X (1- X))) ; decrement value in X. It may happen so by
; chance that, if initially X was larger than 2
; the above condition will trigger
(GO #:G892))))
Perhaps, you would get better luck if you explained what were you trying to do, this function is so wrong that it is begging this question.

Related

Racket: Why wont this compile?

I'm attempting to program a simple function that adds integers to a list descending from a range of "high" and "low", incremented by "step"
For example,
if the input is (3 12 3), the expected output is '(12 9 6 3)
Below is the following code:
(define (downSeries step high low [(define ret '())])
(if (< high low)
ret
(cons ret (- high step))
(downSeries (step (- high step) low))))
I'm pretty new to racket, but I'm really not sure why this isn't compiling. Any tips? Thank you.
Since only racket is tagged and no special languages are describes it is expeted the first line in the definition window is #lang racket. Answer will be different for student languages.
1 The last argument is nested in two parentheses and is illegal syntax. Default arguments only have one set:
(define (test mandatory (optional '()))
(list mandatory optional))
(test 1) ; ==> (1 ())
(test 1 2) ; ==> (1 2)
2 You have 4 operands in your if form. It takes maximum 3!
(if prediate-expression
then-expression
else-expression)
Looking at the code you should have the cons expression in the position of ret argument. Having it before the recursion makes it dead code. ret will always be (). Eg this loks similar to a typical fold implementation:
(define (fold-1 combine init lst)
(if (null? lst)
init ; fully grown init returned
(fold-1 combine
(combine (car lst) init) ; init grows
(cdr lst))))

Feedback on lisp program for project euler 4 [closed]

Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 10 years ago.
Improve this question
I just started learning common lisp and so I've been working on project euler problems. Here's my solution (with some help from https://github.com/qlkzy/project-euler-cl ). Do you guys have any suggestions for stylistic changes and the sort to make it more lisp-y?
; A palindromic number reads the same both ways. The largest palindrome made
; from the product of two 2-digit numbers is 9009 = 91 99.
; Find the largest palindrome made from the product of two 3-digit numbers.
(defun num-to-list (num)
(let ((result nil))
(do ((x num (truncate x 10)))
((= x 0 ) result)
(setq result (cons (mod x 10) result)))))
(defun palindrome? (num)
(let ((x (num-to-list num)))
(equal x (reverse x))))
(defun all-n-digit-nums (n)
(loop for i from (expt 10 (1- n)) to (1- (expt 10 n)) collect i))
(defun all-products-of-n-digit-nums (n)
(let ((nums (all-n-digit-nums n)))
(loop for x in nums
appending (loop for y in nums collecting (* x y)))))
(defun all-palindromes (n)
(let ((nums (all-products-of-n-digit-nums n)))
(loop for x in nums
when (palindrome? x) collecting x)))
(defun largest-palindrome (n)
(apply 'max (all-palindromes 3)))
(print (largest-palindrome 3))
Barnar's solution is great however there's just a small typo, to return a result it should be:
(defun largest-palindrome (n)
(loop with start = (expt 10 (1- n))
and end = (1- (expt 10 n))
for i from start to end
maximize (loop for j from i to end
for num = (* i j)
when (palindrome? num)
maximize num)))
(setq list (cons thing list))
can be simplified to:
(push thing list)
My other comments on your code are not so much about Lisp style as about the algorithm. Creating all those intermediate lists of numbers seems like a poor way to do it, just write nested loops that calculate and test the numbers.
(defun all-palindromes (n)
(loop for i from (expt 10 (1- n)) to (1- (expt 10 n))
do (loop for j from (expt 10 (1- n)) to (1- (expt 10 n))
for num = (* i j)
when (palindrome? num)
collect num)))
But LOOP has a feature you can use: MAXIMIZE. So instead of collecting all the palindroms in a list with COLLECT, you can:
(defun largest-palindrome (n)
(loop with start = (expt 10 (1- n))
and end = (1- (expt 10 n))
for i from start to end
do (loop for j from start to end
for num = (* i j)
when (palindrome? num)
maximize num)))
Here's another optimization:
(defun largest-palindrome (n)
(loop with start = (expt 10 (1- n))
and end = (1- (expt 10 n))
for i from start to end
do (loop for j from i to end
for num = (* i j)
when (palindrome? num)
maximize num)))
Making the inner loop start from i instead of start avoids the redundancy of checking both M*N and N*M.
The example below is a bit contrived, but it finds the palindrome in a lot less iterations than your original approach:
(defun number-to-list (n)
(loop with i = n
with result = nil
while (> i 0) do
(multiple-value-bind (a b)
(floor i 10)
(setf i a result (cons b result)))
finally (return result)))
(defun palindrome-p (n)
(loop with source = (coerce n 'vector)
for i from 0 below (floor (length source) 2) do
(when (/= (aref source i) (aref source (- (length source) i 1)))
(return))
finally (return t)))
(defun suficiently-large-palindrome-of-3 ()
;; This is a fast way to find some sufficiently large palindrome
;; that fits our requirement, but may not be the largest
(loop with left = 999
with right = 999
for maybe-palindrome = (number-to-list (* left right)) do
(cond
((palindrome-p maybe-palindrome)
(return (values left right)))
((> left 99)
(decf left))
((> right 99)
(setf left 999 right (1- right)))
(t ; unrealistic situation
; we didn't find any palindromes
; which are multiples of two 3-digit
; numbers
(return)))))
(defun largest-palindrome-of-3 ()
(multiple-value-bind (left right)
(suficiently-large-palindrome-of-3)
(loop with largest = (* left right)
for i from right downto left do
(loop for j from 100 to 999
for maybe-larger = (* i j) do
(when (and (> maybe-larger largest)
(palindrome-p (number-to-list maybe-larger)))
(setf largest maybe-larger)))
finally (return largest)))) ; 906609
It also tries to optimize a bit the way you check that number is a palindrome, for an additional memory cost though. It also splits the number into a list using somewhat longer code, but making less divisions (which are somewhat computationally expensive).
The whole idea is based on the concept that the largest palindrome will be somewhere more towards the... largest multipliers, so, by starting off with 99 * 99 you will have a lot of bad matches. Instead, it tries to go from 999 * 999 and first find some palindrome, which looks good, doing so in a "sloppy" way. And then it tries hard to improve upon the initial find.

LISP - count occurences of every value in a list

I apologize for the bad English..
I have a task to write a function called "make-bag" that counts occurences of every value in a list
and returns a list of dotted pairs like this: '((value1 . num-occurences1) (value2 . num-occurences2) ...)
For example:
(make-bag '(d c a b b c a))
((d . 1) (c . 2) (a . 2) (b . 2))
(the list doesn't have to be sorted)
Our lecturer allows us to us functions MAPCAR and also FILTER (suppose it is implemented),
but we are not allowed to use REMOVE-DUPLICATES and COUNT-IF.
He also demands that we will use recursion.
Is there a way to count every value only once without removing duplicates?
And if there is a way, can it be done by recursion?
First of, I agree with Mr. Joswig - Stackoverflow isn't a place to ask for answers to homework. But, I will answer your question in a way that you may not be able to use it directly without some extra digging and being able to understand how hash-tables and lexical closures work. Which in it's turn will be a good exercise for your advancement.
Is there a way to count every value only once without removing duplicates? And if there is a way, can it be done by recursion?
Yes, it's straight forward with hash-tables, here are two examples:
;; no state stored
(defun make-bag (lst)
(let ((hs (make-hash-table)))
(labels ((%make-bag (lst)
(if lst
(multiple-value-bind (val exists)
(gethash (car lst) hs)
(if exists
(setf (gethash (car lst) hs) (1+ val))
(setf (gethash (car lst) hs) 1))
(%make-bag (cdr lst)))
hs)))
(%make-bag lst))))
Now, if you try evaluate this form twice, you will get the same answer each time:
(gethash 'a (make-bag '(a a a a b b b c c b a 1 2 2 1 3 3 4 5 55)))
> 5
> T
(gethash 'a (make-bag '(a a a a b b b c c b a 1 2 2 1 3 3 4 5 55)))
> 5
> T
And this is a second example:
;; state is stored....
(let ((hs (make-hash-table)))
(defun make-bag (lst)
(if lst
(multiple-value-bind (val exists)
(gethash (car lst) hs)
(if exists
(setf (gethash (car lst) hs) (1+ val))
(setf (gethash (car lst) hs) 1))
(make-bag (cdr lst)))
hs)))
Now, if you try to evaluate this form twice, you will get answer doubled the second time:
(gethash 'x (make-bag '(x x x y y x z z z z x)))
> 5
> T
(gethash 'x (make-bag '(x x x y y x z z z z x)))
> 10
> T
Why did the answer doubled?
How to convert contents of a hash table to an assoc list?
Also note that recursive functions usually "eat" lists, and sometimes have an accumulator that accumulates the results of each step, which is returned at the end. Without hash-tables and ability of using remove-duplicates/count-if, logic gets a bit convoluted since you are forced to use basic functions.
Well, here's the answer, but to make it a little bit more useful as a learning exercise, I'm going to leave some blanks, you'll have to fill.
Also note that using a hash table for this task would be more advantageous because the access time to an element stored in a hash table is fixed (and usually very small), while the access time to an element stored in a list has linear complexity, so would grow with longer lists.
(defun make-bag (list)
(let (result)
(labels ((%make-bag (list)
(when list
(let ((key (assoc (car <??>) <??>)))
(if key (incf (cdr key))
(setq <??>
(cons (cons (car <??>) 1) <??>)))
(%make-bag (cdr <??>))))))
(%make-bag list))
result))
There may be variations of this function, but they would be roughly based on the same principle.

Forming Lisp code to task -- related to flatten list method

I'm having issues trying to form code for a problem I want to resolve. It goes like this:
~ Goal: flatten a nested list into one number
If the object is a list, replace the list with the sum of its atoms.
With nested lists, flatten the innermost lists first and work from there.
Example:
(CONDENSE '(2 3 4 (3 1 1 1) (2 3 (1 2)) 5))
(2 3 4 (6) (2 3 (3)) 5)
(2 3 4 (6) (8) 5)
(28)
=> 28
I've tried to implement the flatten list function for this problem and I ended up with this:
(defun condense (lst)
(cond
((null lst) nil)
((atom lst) (list lst)))
(t (append (flatten (apply #'+ (cdr lst))))))
But it gives me errors :(
Could anyone explain to me what is wrong with my processing/code? How can I improve it?
UPDATE: JUNE 5 2012
(defun condense(lxt)
(typecase lxt
(number (abs lxt))
(list
(if (all-atoms lxt)
(calculate lxt)
(condense (mapcar #'condense lxt))))))
So here, in this code, my true intent is shown. I have a function calculate that performs a calculation based off the values in the list. It is not necessarily the same operation each time. Also, I am aware that I am returning the absolute value of the number; I did this because I couldn't find another way to return the number itself. I need to find a way to return the number if the lxt is a number. And I had it recurse two times at the bottom, because this is one way that it loops on itself infinitely until it computes a single number. NOTE: this function doesn't implement a flatten function anymore nor does it use anything from it.
Imagine you have your function already. What does it get? What must it produce?
Given an atom, what does it return? Given a simple list of atoms, what should it return?
(defun condense (x)
(typecase x
(number
; then what?
(condense-number x))
(list
; then what?
(if (all-atoms x)
(condense-list-of-atoms x) ; how to do that?
(process-further-somehow
(condense-lists-inside x))))
; what other clauses, if any, must be here?
))
What must condense-lists-inside do? According to your description, it is to condense the nested lists inside - each into a number, and leave the atoms intact. So it will leave a list of numbers. To process that further somehow, we already "have" a function, condense-list-of-atoms, right?
Now, how to implement condense-lists-inside? That's easy,
(defun condense-lists-inside (xs)
(mapcar #'dowhat xs))
Do what? Why, condense, of course! Remember, we imagine we have it already. As long as it gets what it's meant to get, it shall produce what it is designed to produce. Namely, given an atom or a list (with possibly nested lists inside), it will produce a number.
So now, fill in the blanks, and simplify. In particular, see whether you really need the all-atoms check.
edit: actually, using typecase was an unfortunate choice, as it treats NIL as LIST. We need to treat NIL differently, to return a "zero value" instead. So it's better to use the usual (cond ((null x) ...) ((numberp x) ...) ((listp x) ...) ... ) construct.
About your new code: you've erred: to process the list of atoms returned after (mapcar #'condense x), we have a function calculate that does that, no need to go so far back as to condense itself. When you substitute calculate there, it will become evident that the check for all-atoms is not needed at all; it was only a pedagogical device, to ease the development of the code. :) It is OK to make superfluous choices when we develop, if we then simplify them away, after we've achieved the goal of correctness!
But, removing the all-atoms check will break your requirement #2. The calculation will then proceed as follows
(CONDENSE '(2 3 4 (3 1 1 1) (2 3 (1 2)) 5))
==
(calculate (mapcar #'condense '(2 3 4 (3 1 1 1) (2 3 (1 2)) 5)))
==
(calculate (list 2 3 4 (condense '(3 1 1 1)) (condense '(2 3 (1 2))) 5))
==
(calculate (list 2 3 4 (calculate '(3 1 1 1))
(calculate (list 2 3 (calculate '(1 2)))) 5))
==
(calculate (list 2 3 4 6 (calculate '(2 3 3)) 5))
==
(calculate (list 2 3 4 6 8 5))
==
28
I.e. it'll proceed in left-to-right fashion instead of the from the deepest-nested level out. Imagining the nested list as a tree (which it is), this would "munch" on the tree from its deepest left corner up and to the right; the code with all-atoms check would proceed strictly by the levels up.
So the final simplified code is:
(defun condense (x)
(if (listp x)
(reduce #'+ (mapcar #'condense x))
(abs x)))
a remark: Looking at that last illustration of reduction sequence, a clear picture emerges - of replacing each node in the argument tree with a calculate application. That is a clear case of folding, just such that is done over a tree instead of a plain list, as reduce is.
This can be directly coded with what's known as "car-cdr recursion", replacing each cons cell with an application of a combining function f on two results of recursive calls into car and cdr components of the cell:
(defun condense (x) (reduce-tree x #'+ 0))
(defun reduce-tree (x f z)
(labels ((g (x)
(cond
((consp x) (funcall f (g (car x)) (g (cdr x))))
((numberp x) x)
((null x) z)
(T (error "not a number")))))
(g x)))
As you can see this version is highly recursive, which is not that good.
Is this homework? If so, please mark it as such. Some hints:
are you sure the 'condensation' of the empty list in nil? (maybe you should return a number?)
are you sure the condensation of one element is a list? (maybe you should return a number?)
are you sure the condensation of the last case is a list? (shouldn't you return a number)?
In short, how is your condense ever going to return 28 if all your returned values are lists?
Task: With nested lists, flatten the innermost lists first and work from there
sum
flatten lists
For sum use REDUCE, not APPLY.
For flatten lists you need a loop. Lisp already provides specialized mapping functions.
Slightly more advanced: both the sum and the flatten can be done by a call to REDUCE.
You can also write down the recursion without using a higher-order function like APPLY, REDUCE, ... That's a bit more work.
Here's added the explanation of the errors you were having, actually you were close to solving your problem, just a bit more effort and you would get it right.
; compiling (DEFUN CONDENSE ...)
; file: /tmp/file8dCll3
; in: DEFUN CONDENSE
; (T (APPEND (FLATTEN (APPLY #'+ (CDR LST)))))
;
; caught WARNING:
; The function T is undefined, and its name is reserved
; by ANSI CL so that even
; if it were defined later, the code doing so would not be portable.
;
; compilation unit finished
; Undefined function:
; T
; caught 1 WARNING condition
;STYLE-WARNING: redefining CONDENSE in DEFUN
(defun condense (lst)
(cond
((null lst) nil)
((atom lst) (list lst)))
;.------- this is a function call, not a condition
;| (you closed the parens too early)
(t (append (flatten (apply #'+ (cdr lst))))))
;; Argument Y is not a NUMBER: (3 1 1 1)
;; [Condition of type SIMPLE-TYPE-ERROR]
(defun condense (lst)
(cond
((null lst) nil)
((atom lst) (list lst)); .-- not a number!
;You are calling #'+ -------. |
;on something, which | '(3 4 (3 1 1 1) (2 3 (1 2)) 5)
; is not a number. | |
(t (append (flatten (apply #'+ (cdr lst)))))))
;; You probably wanted to flatten first, and then sum
(defun condense (lst)
(cond
((null lst) nil); .--- returns just the
((atom lst) (list lst)); / atom 28, you can
; .---------------------/ just remove it.
(t (append (apply #'+ (flatten lst))))))
;; Now, you are lucky that append would just return the
;; atom if it's not a list
(defun condense (lst)
(cond
((null lst) nil)
((atom lst) (list lst))
(t (apply #'+ (flatten lst)))))
;; Again, you are lucky because (apply can take enough arguments
;; while your list is reasonably small - this will not always be
;; the case, that is why you need to use something more durable,
;; for example, reduce.
(defun condense (lst)
(cond
((null lst) nil)
((atom lst) (list lst))
(t (reduce #'+ (flatten lst)))))
;; Whoa!
(condense '(2 3 4 (3 1 1 1) (2 3 (1 2)) 5))
This is all given the flatten function actually works.
If your lisp already implements flatten and reduce functions (such as Clojure, which I will use here), you can just do something like:
user=> (defn condense [l] (reduce + 0 (flatten l)))
#'user/condense
user=> (condense [1 [2 [[3 4] 5]]])
15
user=>
Failing that, a naive implementation of those functions might be:
(defn flatten [l]
(cond (nil? l) l
(coll? l) (let [[h & t] l]
(concat (flatten h) (flatten t)))
true [l]))
and:
(defn reduce [op initial-value [h & t]]
(if (nil? t)
(op initial-value h)
(op initial-value (reduce op h t))))
But make sure to check the semantics of the particular Lisp you are using. Also, if you are implementing reduce and flatten, you may want to make them tail recursive which I didn't so as to maintain clarity.
In Common Lisp you would do something like:
(defun flatten (l)
(cond ((null l) l)
((atom l) (list l))
(t (append (flatten (car l))
(flatten (cdr l))))))
and use apply instead of reduce:
(defun condense (l) (apply #'+ (flatten l)))

How to loop using recursion in ACL2?

I need to make something like this but in ACL2:
for (i=1; i<10; i++) {
print i;
}
It uses COMMON LISP, but I haven't any idea how to do this task...
We can't use standard Common Lisp constructions such as LOOP, DO. Just recursion.
I have some links, but I find it very difficult to understand:
Gentle Intro to ACL2 Programming
The section "Visiting all the natural numbers from n to 0" in A Gentle Introduction to ACL2 Programming explains how to do it.
In your case you want to visit numbers in ascending order, so your code should look something like this:
(defun visit (n max ...)
(cond ((> n max) ...) ; N exceeds MAX: nothing to do.
(t . ; N less than or equal to MAX:
. n ; do something with N, and
.
(visit (+ n 1) max ...) ; visit the numbers above it.
.
.
.)))
A solution that uses recursion:
> (defun for-loop (from to fn)
(if (<= from to)
(progn
(funcall fn from)
(for-loop (+ from 1) to fn))))
;; Test
> (for-loop 1 10 #'(lambda (i) (format t "~a~%" i)))
1
2
3
4
5
6
7
8
9
10
NIL
(defun foo-loop (n)
(cond ((zp n) "done")
(t (prog2$ (cw "~x0" n)
(foo-loop (1- n)))))
(foo-loop 10)
You can redo the termination condition and the recursion to mimic going from 1 to 10.