MATLAB: vectorized indexing confused with vector*matrix - matlab

I have a calculation that I want to perform element by element.
foreach i from i=1 to i=N
RES_i = det(A - V_i * I) // notice V_i and RES_i are SCALARS
where for example A is 3x3 , I is 3x3, V and RES are 1xN.
so basically what I do is
idx=1:81
res(idx) = det( A - V(idx)*I );
BUT, this get interperted as taking the whole of V and multiplying by I.
this seems like a simple example but I can't figure out how to vectorize it...
Thanks.

First, this isn't Matlab code...
Second: I think you confuse "vectorization" with an implicit loop. Vectorization means to apply an operation to a whole arrays at once, using vector/matrix/tensor notation and operations. What you want is however an implicit for-each type loop, and it makes total sense that Matlab complains about it.
There's no other way than to write it out explicitly:
res = zeros(81,1);
for ii = 1:numel(res)
res(ii) = det(A-V(ii)*I);
end

You perform element-by-element operation by using . together with the operator of choice. For example:
Element-by-element multiplication: .*
Element-by-element division: ./
and so on... is that what you mean?

Related

Make vector of elements less than each element of another vector

I have a vector, v, of N positive integers whose values I do not know ahead of time. I would like to construct another vector, a, where the values in this new vector are determined by the values in v according to the following rules:
- The elements in a are all integers up to and including the value of each element in v
- 0 entries are included only once, but positive integers appear twice in a row
For example, if v is [1,0,2] then a should be: [0,1,1,0,0,1,1,2,2].
Is there a way to do this without just doing a for-loop with lots of if statements?
I've written the code in loop format but would like a vectorized function to handle it.
The classical version of your problem is to create a vector a with the concatenation of 1:n(i) where n(i) is the ith entry in a vector b, e.g.
b = [1,4,2];
gives a vector a
a = [1,1,2,3,4,1,2];
This problem is solved using cumsum on a vector ones(1,sum(b)) but resetting the sum at the points 1+cumsum(b(1:end-1)) corresponding to where the next sequence starts.
To solve your specific problem, we can do something similar. As you need two entries per step, we use a vector 0.5 * ones(1,sum(b*2+1)) together with floor. As you in addition only want the entry 0 to occur once, we will just have to start each sequence at 0.5 instead of at 0 (which would yield floor([0,0.5,...]) = [0,0,...]).
So in total we have something like
% construct the list of 0.5s
a = 0.5*ones(1,sum(b*2+1))
% Reset the sum where a new sequence should start
a(cumsum(b(1:end-1)*2+1)+1) =a(cumsum(b(1:end-1)*2+1)+1)*2 -(b(1:end-1)+1)
% Cumulate it and find the floor
a = floor(cumsum(a))
Note that all operations here are vectorised!
Benchmark:
You can do a benchmark using the following code
function SO()
b =randi([0,100],[1,1000]);
t1 = timeit(#() Nicky(b));
t2 = timeit(#() Recursive(b));
t3 = timeit(#() oneliner(b));
if all(Nicky(b) == Recursive(b)) && all(Recursive(b) == oneliner(b))
disp("All methods give the same result")
else
disp("Something wrong!")
end
disp("Vectorised time: "+t1+"s")
disp("Recursive time: "+t2+"s")
disp("One-Liner time: "+t3+"s")
end
function [a] = Nicky(b)
a = 0.5*ones(1,sum(b*2+1));
a(cumsum(b(1:end-1)*2+1)+1) =a(cumsum(b(1:end-1)*2+1)+1)*2 -(b(1:end-1)+1);
a = floor(cumsum(a));
end
function out=Recursive(arr)
out=myfun(arr);
function local_out=myfun(arr)
if isscalar(arr)
if arr
local_out=sort([0,1:arr,1:arr]); % this is faster
else
local_out=0;
end
else
local_out=[myfun(arr(1:end-1)),myfun(arr(end))];
end
end
end
function b = oneliner(a)
b = cell2mat(arrayfun(#(x)sort([0,1:x,1:x]),a,'UniformOutput',false));
end
Which gives me
All methods give the same result
Vectorised time: 0.00083574s
Recursive time: 0.0074404s
One-Liner time: 0.0099933s
So the vectorised one is indeed the fastest, by a factor approximately 10.
This can be done with a one-liner using eval:
a = eval(['[' sprintf('sort([0 1:%i 1:%i]) ',[v(:) v(:)]') ']']);
Here is another solution that does not use eval. Not sure what is intended by "vectorized function" but the following code is compact and can be easily made into a function:
a = [];
for i = 1:numel(v)
a = [a sort([0 1:v(i) 1:v(i)])];
end
Is there a way to do this without just doing a for loop with lots of if statements?
Sure. How about recursion? Of course, there is no guarantee that Matlab has tail call optimization.
For example, in a file named filename.m
function out=filename(arr)
out=myfun(in);
function local_out=myfun(arr)
if isscalar(arr)
if arr
local_out=sort([0,1:arr,1:arr]); % this is faster
else
local_out=0;
end
else
local_out=[myfun(arr(1:end-1)),myfun(arr(end))];
end
end
end
in cmd, type
input=[1,0,2];
filename(input);
You can take off the parent function. I added it just hoping Matlab can spot the recursion within filename.m and optimize for it.
would like a vectorized function to handle it.
Sure. Although I don't see the point of vectorizing in such a unique puzzle that is not generalizable to other applications. I also don't foresee a performance boost.
For example, assuming input is 1-by-N. In cmd, type
input=[1,0,2];
cell2mat(arrayfun(#(x)sort([0,1:x,1:x]),input,'UniformOutput',false)
Benchmark
In R2018a
>> clear all
>> in=randi([0,100],[1,100]); N=10000;
>> T=zeros(N,1);tic; for i=1:N; filename(in) ;T(i)=toc;end; mean(T),
ans =
1.5647
>> T=zeros(N,1);tic; for i=1:N; cell2mat(arrayfun(#(x)sort([0,1:x,1:x]),in,'UniformOutput',false)); T(i)=toc;end; mean(T),
ans =
3.8699
Ofc, I tested with a few more different inputs. The 'vectorized' method is always about twice as long.
Conclusion: Recursion is faster.

Error using sin. Not enough input arguments. Why is that so?

i am solving a mathematical problem and i can't continue do to the error.
I tried all constant with sin^2(x) yet its the same.
clear
clc
t = 1:0.5:10;
theta = linspace(0,pi,19);
x = 2*sin(theta)
y = sin^2*(theta)*(t/4)
Error using sin
Not enough input arguments.
Error in lab2t114 (line 9)
y = sin^2*(theta)*(t/4)
sin is a function so it should be called as sin(value) which in this case is sin(theta) It may help to consider writing everything in intermediate steps:
temp = sin(theta);
y = temp.^2 ...
Once this is done you can always insert lines from previous calculations into the next line, inserting parentheses to ensure order of operations doesn't mess things up. Note in this case you don't really need the parentheses.
y = (sin(theta)).^2;
Finally, Matlab has matrix wise and element wise operations. The element wise operations start with a period '.' In Matlab you can look at, for example, help .* (element wise multiplication) and help * matrix wise calculation. For a scalar, like 2 in your example, this distinction doesn't matter. However for calculating y you need element-wise operations since theta and t are vectors (and in this case you are not looking to do matrix multiplication - I think ...)
t = 1:0.5:10;
theta = linspace(0,pi,19);
x = 2*sin(theta) %times scalar so no .* needed
sin_theta = sin(theta);
sin_theta_squared = sin_theta.^2; %element wise squaring needed since sin_theta is a vector
t_4 = t/4; %divide by scalar, this doesn't need a period
y = sin_theta_squared.*t_4; %element wise multiplication since both variables are arrays
OR
y = sin(theta).^2.*(t/4);
Also note these intermediate variables are largely for learning purposes. It is best not to write actual code like this since, in this case, the last line is a lot cleaner.
EDIT: Brief note, if you fix the sin(theta) error but not the .^ or .* errors, you would get some error like "Error using * Inner matrix dimensions must agree." - this is generally an indication that you forgot to use the element-wise operators

generate periodic function from given function

let say that from given function f(t), we want to construct new function which is given from existed function by this way
where T is some constant let say T=3; of course k can't be from -infinity to infinity in reality because we can't do infinity summation using computer,so it is first my afford
first let us define our function
function y=f(t);
y=-1/(t^2);
end
and second program
k=-1000:1:999;
F=zeros(1,length(k));
T=3;
for t=1:length(k)
F(t)=sum(f(t+k*T));
end
but when i am running second program ,i am getting
>> program
Error using ^
Inputs must be a scalar and a square matrix.
To compute elementwise POWER, use POWER (.^) instead.
Error in f (line 2)
y=-1/(t^2);
Error in program (line 5)
F(t)=sum(f(t+k*T));
so i have two question related to this program :
1.first what is error why it shows me mistake
how can i do it in excel? can i simplify it somehow? thanks in advance
EDITED :
i have changed my code by this way
k=-1000:1:999;
F=zeros(1,length(k));
T=3;
for t=1:length(k)
result=0;
for l=1:length(k)
result=result+f(t+k(l)*T);
end
F(t)=result;
end
is it ok?
To solve your problem in a vectorized way, you'll have to change the function f such that it can be called with vectors as input. This is, as #patrik suggested, achieved by using the element-wise operators .* ./ .^ (Afaik, no .+ .- exist). Unfortunately the comment of #rayryeng is not entirely correct, which may have lead to confusion. The correct way is to use the element-wise operators for both the division ./ and the square .^:
function y = f(t)
y = -1 ./ (t.^2);
end
Your existing code (first version)
k = -1000:1:999;
F = zeros(1,length(k));
T = 3;
for t=1:length(k)
F(t) = sum(f(t+k*T));
end
then works as expected (and is much faster then the version you posted in the edit).
You can even eliminate the for loop and use arrayfun instead. For simple functions f, you can also use function handles instead of creating a separate file. This gives
f = #(t) -1 ./ (t.^2);
k = -1000:1:999;
t = 1:2000;
T = 3;
F = arrayfun(#(x)sum(f(x+k*T)), t);
and is even faster and a simple one-liner. arrayfun takes any function handle as first input. We create a function handle which takes an argument x and does the sum over all k: #(x) sum(f(x+k*T). The second argument, the vector t, contains all values for which the function handle is evaluated.
As proposed by #Divakar in comments, you can also use the bsxfun function:
f = #(t) -1 ./ (t.^2);
k = -1000:1:999;
t = 1:2000;
T = 3;
F = sum(f(bsxfun(#plus,k*T,t.')),2);
where bsxfun creates a matrix containing all combinations between t and k*T, they are all evaluated using f(...) and last, the sum along the second dimension sums over all k's.
Benchmarking
Lets compare these solutions:
Combination of for loop and sum (original question):
Elapsed time is 0.043969 seconds.
Go through all combinations in 2 for loops (edited question):
Elapsed time is 1.367181 seconds.
Vectorized approach with arrayfun:
Elapsed time is 0.063748 seconds.
Vectorized approach with bsxfun as proposed by #Divakar:
Elapsed time is 0.099399 seconds.
So (sadly) the first solution including a for loop beats both vectorized approaches. For larger k vectors (-10000:1:9999), this behavior can be reproduced. The conclusion seems to be that MATLAB has indeed learned how to optimize for loops.

The fastest way to apply function to matrix in Matlab

I have Nx2 matrix A and a function f of 2 variables.
A = [1,2;3,4;5,6;7,8;9,0];
func = '#(x1, x2) sin(x1+x2)*cos(x1*x2)/(x1-x2)';
func = str2func(func);
I can apply function to matrix in a way like this:
values = arrayfun(#(x1,x2) func(x1, x2), A(:,1), A(:,2));
It seems to be faster than by for-loop, but still to slow for my program.
I wonder if there is any other way to do it faster?
Edit. Functions are generated by the program. They are made by some simple functions like plus, minus, times, expl, ln. I don't know how to vectorize them.
The fastest approach is to vectorize your function, if that's possible. Vectorizing can sometimes be done by just changing *, /, ^ into their element-wise versions .*, ./, .^. In other cases it may require use of bsxfun.
For your example function, vectorization is straightforward:
A = [1,2;3,4;5,6;7,8;9,0];
x1 = A(:,1);
x2 = A(:,2);
values = sin(x1+x2).*cos(x1.*x2)./(x1-x2);

Multiplying each element of a vector with a matrix

I have a vector v and a matrix M. I want to multiply each element of v with M and then sum all the resulting matrices.
for i=1:length(v)
lala(:,:,i) = v(i).*M;
end
sum(lala, 3)
Is it possible to do this without a for loop?
I think Danil Asotsky's answer is correct. He's exploiting the the linearity of the operation here. I just want to give another solution, using use the Kronecker tensor product, that does not dependent on this linearity property, hence still works with operation other than sum:
kvM = kron(v,M);
result = sum(reshape(kvM,[size(M) numel(v)]),3)
It's too late at my local time, and I dont feel like explaining the details of why this works, if you can't figure out from matlab help and wikipedia, then comment below and I'll explain for you.
Do you have single matrix M that don't depend from i?
In this case sum(v(i) * M) = sum(v(i)) *M.
E.g you will have expected result for code:
v_sum = sum(v);
lala_sum = v_sum * M;